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Partial Motivation

WoDet 2010: Seattle

Debate: can deterministic algorithms be as fast
as nondeterministic ones?




External vs. Internal Determinism
[Emrath+Padua ‘88, Netzer+Miller '90]

* External: same input =2 same result

* Internal: same input 2 same “intermediate
states” and same result



Internal Determinism

* Trace: a computation’s final state, Trace
intermediate states, along with its l
control-flow DAG

* Internally deterministic: for any fixed
input, all possible executions result in
equivalent traces (with respect to some
level of abstraction)

— External determinism

returns “1111”

— Sequential semantics



Internally deterministic?

=10
in parallel do
{ r3:=AtomicAdd(z,1) }
{ r4:= AtomicAdd(z,10)
in parallel do
{ 76 := AtomicAdd(z,100) }
{ r7:= AtomicAdd(z,1000) }

SUgh b b e

}

return o
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2. in parallel do

3. { 7r3:=AtomicAdd(z,1) }

4. { r4:= AtomicAdd(z,10)

5 in parallel do

6. { 7re:= AtomicAdd(z,100) }
rq :=1. { 77 := AtomicAdd(x, 1000) }

}

8. returnax

WoDet 2013 returns “11117 5 returns “11117



But!!

What does it mean for traces to be equivalent?

Emrath+Padua and Netzer+Miller: equal bit
representation. Nice and simple.

But very restrictive: what about pointers from
memory allocation?

Instead: abstract operations on data structures
— e.g.adictionary

— equality is subtle



Encapsulation

Using abstract operations gives a technique to
“encapsulate” non-determinism while still being
internally deterministic.

— non-deterministic subroutines

— non-deterministic internal representations of
data structures

— more subtle: non-deterministic implementations
of linearizable but commutative data structures



Pros and Cons of Internal Determinism

+ ?
* Debugging e Complicated code

 Composability
* Verification
* Performance analysis

* Performance penalty

* Sequential semantics

Can Internally Deterministic Parallel
Algorithms be fast and simple to code?
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Internal Determinism in debugging

Need to be careful that measurement does not
“perturb” the system.

* Break points/Single stepping — can only make
gueries that are deterministic. Based on a
particular sequential order.

* Adding observations (“print” statements) -
need to collect them deterministically.



Problem Based Benchmarks

* Define a set of benchmarks in terms of Input/
Output behavior on specific inputs, and use
them to compare solutions.
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Many Existing Benchmarks

But none we know of match the spec

* Code Based : SPEC, Da Capo, PassMark, Splash-2,
PARSEC, fluidMark

e Application Specific: Linpack, BioBench, BioParallel,
MediaBench, SATLIB, CineBench, MineBench, TCP,
ALPBench, Graph 500, DIMACS challenges

e Method Based: Lonestar

* Machine analysis: HPC challenge, Java Grande, NAS,
Green 500, Graph 500, P-Ray, fluidMark



Preliminary Benchmarks |
-

Sequences * Comparison Sorting
* Removing Duplicates
* Dictionary
Graphs * Breadth First Search
* Graph Separators
* Minimum Spanning Tree
* Maximal Independent Set

Geometry/ * Delaunay Triangulation and Refinement

Graphics * Convex Hulls
* Ray Triangle Intersection (Ray Casting)
Micropolygon Rendering

* finished
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Preliminary Benchmarks Il

Machine * All Nearest Neighbors

Learning Support Vector Machines
* K-Means

Text * Suffix Arrays

Processing g4t Distance
String Search

Science * Nbody force calculations

Phylogenetic tree
Numerical  * Sparse Matrix Vector Multiply

Sparse Linear Solve
* finished

WoDet 2013



Each Benchmark Consists of:

A precise specification of the problem
Specification of Input/Output file formats
A set of input generators.

Code for testing the results

Baseline sequential code




How do the problems do on
a modern multicore
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Our Experiments

We coded up the 16 benchmarks from the PBBS
with strict internal determinism trying various
approaches.

Compared them with sequential code and non-
deterministic code both in terms of runtime
and code complexity.



Our Approach

Nested Parallelism +
Commutative/Linearizable operations (Steele ‘90)

Specific approaches:

* Functional programming

* History independent data structures
* Deterministic reservations

Written in g++ with just CAS, cilk_for, spawn, sync



Nested Parallelism

We consider nested parallel computations
arbitrary nesting of fork-join and parallel loops

Has some important advantages:
— Good for caching
— Reduces scheduling overhead
— Supported by many languages
— Easy to analyze costs
— Makes it easier to verify code??



Commutativity

f(§)—=S"=v  fconverts from state S to S’ returning v

f and g commute if for all S
Jf& =8 =v, gS§;,)—=§,=v

8
g(S)eSg:v; f(Sg)eng:v}
implies: Vr=Vyandv =v and S, =S,



Linearizable

Concurrent operations appear to happen
atomically.

Theorem: for a nested parallel computation if all
parallel operations commute and are linearizable
then the computation is internally deterministic.




Commutative Operations: Examples

e write-with-min, write-with-add
e dictionary

— Inserts commute

— deletes commute

— searches commute
 union-find structure
— find(x) : commute

— link(r,, x,) and link(r,, x,) commute ifr; #r,



Specific Approaches

* Functional programming
* History independent data structures
* Deterministic reservations

Deterministic reservations

Spanning forest

History-independent
Suffix array data structures

Remove duplicates

Comparison sort Minimum spanning forest

N-body Delaunay refinement Maximal independent set
K-nearest neighbors Breadth first search
Triangle ray intersect Delaunay triangulation

Delaunay refinement
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Internally Deterministic Problems

History-independent
Suffix array data structures

Remove duplicates

Deterministic reservations

Spanning forest

Comparison sort
N-body Delaunay refinement

Minimum spanning forest
Maximal independent set

K-nearest neighbors Breadth first search

Triangle ray intersect Delaunay triangulation

Delaunay refinement
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Removing Duplicates
Using hashing:

— Based on generic hash and comparison

— Problem: representation can depend on ordering.
Also on which redundant element is kept.

— Solution: Use history independent hash table
based on linear probing...once done inserting,
representation is independent of order of
Insertion

’ 1111 11




Removing Duplicates
Using hashing:

— Based on generic hash and comparison

— Problem: representation can depend on ordering.
Also on which redundant element is kept.

— Solution: Use history independent hash table
based on linear probing...once done inserting,
representation is independent of order of
Insertion

’ 1111 11




Internally Deterministic Problems

History-independent Deterministic Reservations
data structures

Suffix array Spanning forest
Comparison sort Remove duplicates Minimum spanning forest
N-body Delaunayireninement Maximal independent set
K-nearest neighbors Breadth first search
Triangle ray intersect Delaunay triangulation

Delaunay refinement
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Deterministic Reservations

Priority reserve all state that need to touch based
on unique identifier. Only proceed if “won” on all
reservations. Use write-with-min for reservation.

Example: speculative for
for (1=0; 1i<n; 1++)
£(1);
Want to simulate sequential order even with loop
carried dependences which don’t commute.



Speculative For

for (i=0; i<n; i++) £(i);

Converts to:
parallel for (1=0; 1i<n; 1++)
reserve any shared vars with 1
parallel for (1=0; 1i<n; 1++)
1f won all reservations, f(X)
else mark for retry



Speculative For

for (i=0; i<n; i++) £(i);

Or, more efficiently:
while (done < n)
parallel for (i=0; i<k; i++)
reserve(I(1+done))
parallel for (i=0; i<n; i++)
1f succeed f(I(i+done))

pack remaining indices into I



Delaunay Triangulation

* Adding points deterministically
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Delaunay Triangulation

* Adding points deterministically

P Pa P3
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Delaunay Triangulation

* Adding points deterministically
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Delaunay Triangulation

* Adding points deterministically
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Delaunay Triangulation

* Adding points deterministically

Pt

Pz De
Pa 16
16 7p
16 O Pio ' pe
Po
© 17
Py 17
™ P12
P
P Pa Pa

WoDet 2013 34



Deterministic Reservations

Generic framework

iterates =[1,...,n];
while(iterates remain){

Phase 1: in parallel, all i in first P iterates
call reserve(i);

Phase 2: in parallel, all i in first P iterates
call commit(i);

Remove successfully committed i's from
iterates;

« Which iterates successfully commit is
deterministic.

Delaunay triangulation

iterates: points to be added

reserve(i){
find cavity;
reserve points in cavity;

}

commit(i){
check reservations;
if(all reservations successful){
add point and triangulate;




Internally Deterministic Problems

Suffix array
Comparison sort
N-body

K-nearest neighbors

Triangle ray intersect

WoDet 2013

History-independent
data structures
Remove duplicates

Delaunay refinement
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Deterministic reservations
Spanning forest

Minimum spanning forest
Maximal independent set

Breadth first search

Delaunay triangulation

Delaunay refinement




Maximal Independent Set

Important substep in Graph Coloring
Sequential algorithm:

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In 10
else S[u] = out X X5
O
2
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Maximal Independent Set

Sequential algorithm:

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out

Very efficient: most edges not even visited, simple loops
About 7x faster than sorting m edges



Maximal Independent Set

Same algorithm: with parallel speculation

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 1OX X 5
o
2
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Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10

112]/314/5/6/7 8/9l10
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MIS Parallel Code

struct MISStep {
bool reserve(int i) {
int d = V[1i].degree;
flag = IN;
for (int j = 0; j < d; j++) {
int ngh = V[i].Neighbors[]];
if (ngh < 1) {
if (Fl[ngh] == IN) { flag = OUT; return 1;}
else if (Fl[ngh] == LIVE) flag = LIVE; } }
return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;}};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative for(MISStep(Fl, V), 0, n, psize);}



Experimental Results

We ran experiments comparing our
deterministic implementations with serial and
nondeterministic ones

We used a 32-core (with hyper-threading)
machine with 4 Intel X7560 Nehalem
Processors

Used inputs drawn from a variety of
distributions

All codes are between 20 and 500 lines



Experimental Results

Delaunay Triangulation Delaunay Refinement
- - - serialDelaunay ] |  [=—deterministicRefine |
—+— deterministicDelaunay | ¢ Galois—Refine
0% L ¢ Galois—Delaunay

Run time (seconds)
Run time (seconds)

1 5 4 8 16 32 64 10, 5 4 8 16 32 64
Number of threads Number of threads
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Experimental Results

10° : .
- = =serialSort
o stiParallelSort
—+—sampleSort
10’ ——quickSort |4

Run time (seconds)

1 2 4 8 16 32 64
Number of threads

(a) comparison sorting algorithms with a trigram
string of length 107

= -sleriaIMS;T
——parallelKruskal

Run time (seconds)

1 2 4 8 16 32 64
Number of threads

(d) M§TodhedriftiiSwith a weighted random lo-

cal graph (n = 107, m =5 x 107)

- = =serialHash
—— deterministicHash

Run time (seconds)

1 2 4 8 16 32 64
Number of threads
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(b) remove duplicates algorithms with a trigram
string of length 107

= -sell'iaIMIS l

e ndMIS
—+— cdeterministicMIS

Run time (seconds)
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Number of threads

(e) MIS algorithms wid¥la random local graph
(n= 10", m=5>10")
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(¢) BFS algorithms with a random local graph
(n=10",m =5 x 107)
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(f) Delaunay Triangulation algorithms with a 2d

in cube graph (n = 10°)



Experimental Results

 Up to 31.6x speedup on 32 processors
 Competitive with nondeterministic solutions

* On asingle processor, our deterministic
implementations are only 1-2.5x slower than
their sequential counterparts



Conclusions

* Internal Determinism can be fast
 Some simple techniques can help

— History independence

— Deterministic reservations

— Functional programming
Open questions:

— What types of problems truly benefit from a
nondeterministic solution?

— Safe commutativity?
http://www.cs.cmu.edu/~pbbs



