Internally Deterministic
Parallel Algorithms

Guy Blelloch
Carnegie Mellon University

Also: Jeremy Fineman, Phil Gibbons (Intel),
Julian Shun, Harsha Vardham Simhadri, ...

WoDet 2013

Partial Motivation

WoDet 2010: Seattle

Debate: can deterministic algorithms be as fast
as nondeterministic ones?

External vs. Internal Determinism
[Emrath+Padua ‘88, Netzer+Miller '90]

* External: same input =2 same result

* Internal: same input 2 same “intermediate
states” and same result

Internal Determinism

* Trace: a computation’s final state, Trace
intermediate states, along with its l
control-flow DAG

* Internally deterministic: for any fixed
input, all possible executions result in
equivalent traces (with respect to some
level of abstraction)

— External determinism

returns “1111”

— Sequential semantics

Internally deterministic?

=10
in parallel do
{ r3:=AtomicAdd(z,1) }
{ r4:= AtomicAdd(z,10)
in parallel do
{ 76 := AtomicAdd(z,100) }
{ r7:= AtomicAdd(z,1000) }

SUgh b b e

}

return o

@®

o B =

2. in parallel do

3. { 7r3:=AtomicAdd(z,1) }

4. { r4:= AtomicAdd(z,10)

5 in parallel do

6. { 7re:= AtomicAdd(z,100) }
rq :=1. { 77 := AtomicAdd(x, 1000) }

}

8. returnax

WoDet 2013 returns “11117 5 returns “11117

But!!

What does it mean for traces to be equivalent?

Emrath+Padua and Netzer+Miller: equal bit
representation. Nice and simple.

But very restrictive: what about pointers from
memory allocation?

Instead: abstract operations on data structures
— e.g.adictionary

— equality is subtle

Encapsulation

Using abstract operations gives a technique to
“encapsulate” non-determinism while still being
internally deterministic.

— non-deterministic subroutines

— non-deterministic internal representations of
data structures

— more subtle: non-deterministic implementations
of linearizable but commutative data structures

Pros and Cons of Internal Determinism

+ ?
* Debugging e Complicated code

 Composability
* Verification
* Performance analysis

* Performance penalty

* Sequential semantics

Can Internally Deterministic Parallel
Algorithms be fast and simple to code?

WoDet 2013 8

Internal Determinism in debugging

Need to be careful that measurement does not
“perturb” the system.

* Break points/Single stepping — can only make
gueries that are deterministic. Based on a
particular sequential order.

* Adding observations (“print” statements) -
need to collect them deterministically.

Problem Based Benchmarks

* Define a set of benchmarks in terms of Input/
Output behavior on specific inputs, and use
them to compare solutions.

1] |0
\/ TR
ST < I~
[/ /) LA
7 [~ e i
f 1"‘/' - ol
>+
I

WoDet 2013 In put

10

Many Existing Benchmarks

But none we know of match the spec

* Code Based : SPEC, Da Capo, PassMark, Splash-2,
PARSEC, fluidMark

e Application Specific: Linpack, BioBench, BioParallel,
MediaBench, SATLIB, CineBench, MineBench, TCP,
ALPBench, Graph 500, DIMACS challenges

e Method Based: Lonestar

* Machine analysis: HPC challenge, Java Grande, NAS,
Green 500, Graph 500, P-Ray, fluidMark

Preliminary Benchmarks |
-

Sequences * Comparison Sorting
* Removing Duplicates
* Dictionary
Graphs * Breadth First Search
* Graph Separators
* Minimum Spanning Tree
* Maximal Independent Set

Geometry/ * Delaunay Triangulation and Refinement

Graphics * Convex Hulls
* Ray Triangle Intersection (Ray Casting)
Micropolygon Rendering

* finished

WoDet 2013 12

Preliminary Benchmarks Il

Machine * All Nearest Neighbors

Learning Support Vector Machines
* K-Means

Text * Suffix Arrays

Processing g4t Distance
String Search

Science * Nbody force calculations

Phylogenetic tree
Numerical * Sparse Matrix Vector Multiply

Sparse Linear Solve
* finished

WoDet 2013

Each Benchmark Consists of:

A precise specification of the problem
Specification of Input/Output file formats
A set of input generators.

Code for testing the results

Baseline sequential code

How do the problems do on
a modern multicore

32
28
24
20
16
12

WT1/T32
Tseq/T32

AN .
QSQ . (\% N\ Q} ,J’)Q' o\ ’b\\\ \ct;g \"’QJ N 3
SR R R R~ S AN R &
S F &S &R o
N\ @’b Q/’b Q O %Q:b
Q)K

15

Our Experiments

We coded up the 16 benchmarks from the PBBS
with strict internal determinism trying various
approaches.

Compared them with sequential code and non-
deterministic code both in terms of runtime
and code complexity.

Our Approach

Nested Parallelism +
Commutative/Linearizable operations (Steele ‘90)

Specific approaches:

* Functional programming

* History independent data structures
* Deterministic reservations

Written in g++ with just CAS, cilk_for, spawn, sync

Nested Parallelism

We consider nested parallel computations
arbitrary nesting of fork-join and parallel loops

Has some important advantages:
— Good for caching
— Reduces scheduling overhead
— Supported by many languages
— Easy to analyze costs
— Makes it easier to verify code??

Commutativity

f(§)—=S"=v fconverts from state S to S’ returning v

f and g commute if for all S
Jf& =8 =v, gS§;,)—=§,=v

8
g(S)eSg:v; f(Sg)eng:v}
implies: Vr=Vyandv =v and S, =S,

Linearizable

Concurrent operations appear to happen
atomically.

Theorem: for a nested parallel computation if all
parallel operations commute and are linearizable
then the computation is internally deterministic.

Commutative Operations: Examples

e write-with-min, write-with-add
e dictionary

— Inserts commute

— deletes commute

— searches commute
 union-find structure
— find(x) : commute

— link(r,, x,) and link(r,, x,) commute ifr; #r,

Specific Approaches

* Functional programming
* History independent data structures
* Deterministic reservations

Deterministic reservations

Spanning forest

History-independent
Suffix array data structures

Remove duplicates

Comparison sort Minimum spanning forest

N-body Delaunay refinement Maximal independent set
K-nearest neighbors Breadth first search
Triangle ray intersect Delaunay triangulation

Delaunay refinement

WoDet 2013 22

Internally Deterministic Problems

History-independent
Suffix array data structures

Remove duplicates

Deterministic reservations

Spanning forest

Comparison sort
N-body Delaunay refinement

Minimum spanning forest
Maximal independent set

K-nearest neighbors Breadth first search

Triangle ray intersect Delaunay triangulation

Delaunay refinement

WoDet 2013 23

Removing Duplicates
Using hashing:

— Based on generic hash and comparison

— Problem: representation can depend on ordering.
Also on which redundant element is kept.

— Solution: Use history independent hash table
based on linear probing...once done inserting,
representation is independent of order of
Insertion

’ 1111 11

Removing Duplicates
Using hashing:

— Based on generic hash and comparison

— Problem: representation can depend on ordering.
Also on which redundant element is kept.

— Solution: Use history independent hash table
based on linear probing...once done inserting,
representation is independent of order of
Insertion

’ 1111 11

Internally Deterministic Problems

History-independent Deterministic Reservations
data structures

Suffix array Spanning forest
Comparison sort Remove duplicates Minimum spanning forest
N-body Delaunayireninement Maximal independent set
K-nearest neighbors Breadth first search
Triangle ray intersect Delaunay triangulation

Delaunay refinement

WoDet 2013 26

Deterministic Reservations

Priority reserve all state that need to touch based
on unique identifier. Only proceed if “won” on all
reservations. Use write-with-min for reservation.

Example: speculative for
for (1=0; 1i<n; 1++)
£(1);
Want to simulate sequential order even with loop
carried dependences which don’t commute.

Speculative For

for (i=0; i<n; i++) £(i);

Converts to:
parallel for (1=0; 1i<n; 1++)
reserve any shared vars with 1
parallel for (1=0; 1i<n; 1++)
1f won all reservations, f(X)
else mark for retry

Speculative For

for (i=0; i<n; i++) £(i);

Or, more efficiently:
while (done < n)
parallel for (i=0; i<k; i++)
reserve(I(1+done))
parallel for (i=0; i<n; i++)
1f succeed f(I(i+done))

pack remaining indices into I

Delaunay Triangulation

* Adding points deterministically

Pt
Pz De
Pa
M
P 1o ! pe
Po
Q
Py
01 P12
P
P Pa Pa

WoDet 2013 30

Delaunay Triangulation

* Adding points deterministically

P Pa P3

WoDet 2013 31

Delaunay Triangulation

* Adding points deterministically

WoDet 2013 32

Delaunay Triangulation

* Adding points deterministically

WoDet 2013 33

Delaunay Triangulation

* Adding points deterministically

Pt

Pz De
Pa 16
16 7p
16 O Pio ' pe
Po
© 17
Py 17
™ P12
P
P Pa Pa

WoDet 2013 34

Deterministic Reservations

Generic framework

iterates =[1,...,n];
while(iterates remain){

Phase 1: in parallel, all i in first P iterates
call reserve(i);

Phase 2: in parallel, all i in first P iterates
call commit(i);

Remove successfully committed i's from
iterates;

« Which iterates successfully commit is
deterministic.

Delaunay triangulation

iterates: points to be added

reserve(i){
find cavity;
reserve points in cavity;

}

commit(i){
check reservations;
if(all reservations successful){
add point and triangulate;

Internally Deterministic Problems

Suffix array
Comparison sort
N-body

K-nearest neighbors

Triangle ray intersect

WoDet 2013

History-independent
data structures
Remove duplicates

Delaunay refinement

36

Deterministic reservations
Spanning forest

Minimum spanning forest
Maximal independent set

Breadth first search

Delaunay triangulation

Delaunay refinement

Maximal Independent Set

Important substep in Graph Coloring
Sequential algorithm:

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In 10
else S[u] = out X X5
O
2
o 1
X .
8 (e
4 @ ® 6
% 3

Maximal Independent Set

Sequential algorithm:

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out

Very efficient: most edges not even visited, simple loops
About 7x faster than sorting m edges

Maximal Independent Set

Same algorithm: with parallel speculation

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 1OX X 5
o
2
o 1
X .
: %9
4 @ ® 6
% 3

Maximal Independent Set

same algorithm: with speculation on prefix

for each u in V : S[u] = Remain

for each u in V

if for all v in N(u), v < u, S[v] = Out
then S[u] = In
else S[u] = Out 10

112]/314/5/6/7 8/9l10

WoDet 2013

40

MIS Parallel Code

struct MISStep {
bool reserve(int i) {
int d = V[1i].degree;
flag = IN;
for (int j = 0; j < d; j++) {
int ngh = V[i].Neighbors[]];
if (ngh < 1) {
if (Fl[ngh] == IN) { flag = OUT; return 1;}
else if (Fl[ngh] == LIVE) flag = LIVE; } }
return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;}};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative for(MISStep(Fl, V), 0, n, psize);}

Experimental Results

We ran experiments comparing our
deterministic implementations with serial and
nondeterministic ones

We used a 32-core (with hyper-threading)
machine with 4 Intel X7560 Nehalem
Processors

Used inputs drawn from a variety of
distributions

All codes are between 20 and 500 lines

Experimental Results

Delaunay Triangulation Delaunay Refinement
- - - serialDelaunay] | [=—deterministicRefine |
—+— deterministicDelaunay | ¢ Galois—Refine
0% L ¢ Galois—Delaunay

Run time (seconds)
Run time (seconds)

1 5 4 8 16 32 64 10, 5 4 8 16 32 64
Number of threads Number of threads

WoDet 2013 43

Experimental Results

10° : .
- = =serialSort
o stiParallelSort
—+—sampleSort
10’ ——quickSort |4

Run time (seconds)

1 2 4 8 16 32 64
Number of threads

(a) comparison sorting algorithms with a trigram
string of length 107

= -sleriaIMS;T
——parallelKruskal

Run time (seconds)

1 2 4 8 16 32 64
Number of threads

(d) M§TodhedriftiiSwith a weighted random lo-

cal graph (n = 107, m =5 x 107)

- = =serialHash
—— deterministicHash

Run time (seconds)

1 2 4 8 16 32 64
Number of threads

10 : : '

(b) remove duplicates algorithms with a trigram
string of length 107

= -sell'iaIMIS l

e ndMIS
—+— cdeterministicMIS

Run time (seconds)

1 2 4 8 16 32 64
Number of threads

(e) MIS algorithms wid¥la random local graph
(n= 10", m=5>10")

- ==serialBFS
. it NABFS

e TR —+—deterministicBFS |
) .y
=
(o]
8
o
[0}
E10°}
=
=]
o

10-1 N ' L L

1 2 4 8 16 32 64
Number of threads

(¢) BFS algorithms with a random local graph
(n=10",m =5 x 107)

- = =serialDelaunay
—+— deterministicDelaunay
¢+ Galois—Delaunay

=
o
>l
ko

-—
O—h

Run time (seconds)

0
10
1

2 4 8 16 32 64
Number of threads

(f) Delaunay Triangulation algorithms with a 2d

in cube graph (n = 10°)

Experimental Results

 Up to 31.6x speedup on 32 processors
 Competitive with nondeterministic solutions

* On asingle processor, our deterministic
implementations are only 1-2.5x slower than
their sequential counterparts

Conclusions

* Internal Determinism can be fast
 Some simple techniques can help

— History independence

— Deterministic reservations

— Functional programming
Open questions:

— What types of problems truly benefit from a
nondeterministic solution?

— Safe commutativity?
http://www.cs.cmu.edu/~pbbs

