
Parallel and Concurrent Algorithms (15-852), Spring 2024
Assignment #1 Due: Thu, Feb 1

Problem 1: Finding the Max

In this problem you need to describe an algorithm in the MP-RAM with arbitrary-way
forking for finding the maximum of a set of n values.

This is split into four parts with different bounds.

1. (5pt) Describe an O(n2) work and constant span algorithm.

2. (10pt). Using the result from the first part, describe a recursive algorithm that runs
in O(n) and O(log log n) span. You might find the sorts of techniques used for the
O(log log n) merging algorithm helpful.

3. (10pt). Describe an O(n3/2) work and constant span algorithm using ideas from the
previous parts.

4. (10pt). Describe an O(n) work and constant span randomized algorithm. Hint: use
sampling to first reduce the problem down to e.g. O(n7/8) size, and use something like
the algorithm from the previous part on the sample.

Problem 2: Union Scan

You are given a sequence of keys, and you want to insert them into a set one by one, while
keeping all the intermediate sets. Lets call this the all prefix-sets (APS) problem.

Assume you have a library for sets that supports insertion in O(log n) work and span; and
it supports union of two sets in O(m log(n/m)) work and O(log n) span where m is the size
of the smaller set and n the size of the larger. Both these operations generate their result
without destroying their input.

Using union you can implement the APS problem by inserting each element into its own
singleton set (in parallel), and then doing a scan (prefix-sum) using union as the associative
combining function. This gives the correct answer since for each position it will return the
union of all previous elements.

1. (10pt). Determine the work and span of the scan algorithm in the notes when used
with union. Note that it will not be O(n) work since the union does not take O(1)
work.

1



2. (10pt). Now consider the following modification of the prefix sum algorithm. First
break the input into

√
n blocks of size

√
n each. Now take the sum (based on the

associative function) of each of the blocks, in parallel across the blocks, but sequentially
within each block. Then run a scan across the

√
n partial sums sequentially. Finally

use the results of the partial sums to fill in the final results within each chunk, again
in parallel across the blocks, but sequentially within the blocks. Below is an example
after each step using addition as the combining function.

Break into blocks: [[2, 3, 1, 2], [1, 3, 1, 5], [2, 7, 1, 3], [2, 1, 3, 1]]

Sum within blocks (parallel across blocks, sequential within): [8, 10, 13, 7]

Scan across block sums (sequential): [0, 8, 18, 31]

Scan within blocks starting with the offsets from previous step (parallel across blocks,
sequential within):

[0, 2, 5, 6], [8, 9, 12, 13], [18, 20, 27, 28], [31, 33, 34, 37]

Now determine the work and span of this modified scan algorithm when used with
union.

2


