15-853:Algorithms in the Real World

Computational Biology I

- Introduction
- Longest Common Subsequence and Edit Distance

Proteins

Proteins: sequence of Amino Acids
\{gly, trp, cys, ...\}
Each DNA bp triple (a "codon") forms 1 amino acid Since there are 64 possible codons, this is a many to one mapping. Some triples have special meanings, e.g. EOF
Chromosomes are partitioned into genes each of which codes a protein. Some regions of the chromosome do not code anything (intergene DNA).

品
Page 3

DNA

DNA: suquence of base-pairs (bp):
$\{A, C, T, G\}$

Human Genome

about 3×10^{9} bps divided into 46 chromosomes with between 5×10^{7} and 25×10^{7} bps each
Each chromosome is a sequence of base-pairs

DNA is used to generate proteins:

DNA $\xrightarrow{\text { transcription }} m R N A \xrightarrow{\text { translation }}$ Protein
15-853
Page 2

Form and Function

The Amino Acid sequence determines the protein's 3d structure. The structure is also be affected by the environment.

- The primary structure refers to the amino acid sequence.
- The secondary structure refers to general configuration into alpha helixs and beta sheets
- The tertiary structure refers to the full 3d structure
Protein's 3d structure determines its function.

Some Goals in Molecular Biology

1. Extract genome sequence for various organisms.
2. Determine what proteins they code.
3. Determine structure and purpose of coded proteins.
Goals 2. and 3. can often be aided by matching genome or protein sequences to previously studied sequences

Use to:

- study and cure genetic diseases
- design drugs
- study evolution
- understand molecular processes

Matching and Sequence Alignment

How similar are:
actagtctac
cgacgtcgata ?
Allow for:
mutations: x to y
insertions: - to y "indels"
deletions: x to _ $\}$
e.g.

$\begin{array}{l}\text { acta_gtc_tac } \\ \text { \| \| \| \| \| \| \| \| } \\ \text { cgacgtcgata__ }\end{array}$	$\begin{array}{l}1 \text { mutation } \\ 3 \text { insertions } \\ 2 \text { deletions }\end{array}$

15-853

Example of MS

Multiple Sclerosis is a disease in which the immune system attacks the myelin sheaths of nerve cells
Conjecture: The immune system T-cells incorrectly identify the myelin sheaths as a virus or bacteria from an earlier infection.
This was tested by comparing the proteins sequences of myelin sheaths with a database of viral and bacterial proteins.
The ones that matched were tested in the laboratory to see if they were attacked by the Tcells. Some were.

Applications of matching and alignment

Used in many ways in computational biology

- Sequencing (finding the sequence of DNA or Proteins)
- Physical mapping (locating unique tags in DNA)
- Database searches (does this DNA match any other DNA?)
- Evolutionary trees (how similar are two species?)
Before talking about the general matching problem in computational Biology, we will talk about a closely related, but simpler problem: longest common subsequence (LCS)

Longest Common Subsequence

Subsequence (\subseteq): Any subset of the elements of a sequence that maintain relative order
e.g. $A=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$
$A^{\prime}=a_{2} a_{4} a_{5} \quad$ (a subsequence of A)
$A^{\prime}=a_{2} a_{1} a_{5} \quad$ (not a subsequence of A)
Longest Common Subsequence (LCS):
$\operatorname{LCS}(A, B)=C$, where $C \subseteq A, C \subseteq B,|C|$ is maximized
e.g. $\begin{array}{lllllll}A & =a_{c} b & a & c & d & a & c \\ B & =C & d & d & d & d & d\end{array}$
$C=a c d c \mid=4$
15-853
Page 9

Applications

Unix diff:
Find Minimum Edit Distance and print edits
GNU diff based on algorithm by Eugene Myers, who is VP of Informatics at Celera

Screen redisplay:

Find minimum number of changes that need to be sent to the display along a "skinny" wire.
Used, for example, by Emacs

Computational biology:

This will use generalizations of LCS, but the algorithms will work with slight modifications.

Minimum Edit Distance

Minimum Edit Distance: $D(A, B)=$ minimum \# of insertions and deletions needed to change A to B.

```
e.g. }A=abacda
```

```
delet
```

$B=c a d c c a c$
insert

Claim: $D(A, B)=|A|+|B|-2|L C S(A, B)|$

Proof outline:

$C=\operatorname{LCS}(A, B)$
$A-C=$ deletions,$\quad B-C=$ insertions
\#deletions $=|A|-|C| \quad$ \#insertions $=|B|-|C|$
This reduction works both ways, hence equality.
15-853
Page 10

Outline

Will work our way up to the GNU diff algorithm

- Recursive solution
- Memoized solution
- Dynamic programming
- Memory efficient solution
- Myers/Ukkonon algorithm

Recursive Solution

$D(A$, empty $)=|A| \quad \operatorname{delete}(A)$
$D($ empty, $B)=|B| \quad \operatorname{insert}(B)$
$D(A: x, B: x)=D(A, B)$
$D(A: a, B: b)=\min (\underbrace{1+D(A: a, B)}, \underbrace{1+D(A, B: b)})$
insert(b) delete(a)
Note that this just returns the edit distance, but it is easy to include the edits.
Can work from start or end (here from end).
Why does it work?
What is the running time?

Memoized Solution

int ED(int i, int j) \{
if (M[i,j] != -1) return M[i,j];
if (i==0) r $=j$;
if $(j==0) r=i$;
if (A[i] $==B[j]$
$r=E D(i-1, j-1) ;$
else
$r=\min (1+E D(i-1, j), 1+E D(i, j-1)) ;$ return $M[i, j]=r$;
\}
$\mathrm{M}[1 \ldots \mathrm{n}, 1 \ldots \mathrm{~m}]=-1$;
ED (n, m);

$$
0
$$

Recursive Solution

Convert to use indices

int ED(int i, int j) \{
if $(i==0) r=j$;
if ($j==0$) $r=i$;
if (A[i] == B[j])
$r=E D(i-1, j-1) ;$
else
$r=\min (1+E D(i-1, j), 1+E D(i, j-1)) ;$
return r;
\}
ED (n, m) ;
What is the running
time?

Dynamic programming

for $i=1$ to n
M[i,1] = i;
for $j=1$ to m
$\mathrm{M}[1, j]=j ;$
for $i=1$ to n
for $j=1$ to m
if (A[i] == B[j])
$M[i, j]=M[i-1, j-1] ;$
else
$M[i, j]=1+\min (M[i-1, j], M[i, j-1]) ;$

Example

Note: can be filled in any order as long as the cells to the left and above are filled.
Can follow path back through matrix to construct edits.
Page 17

Space Efficient Solution

For each entry in a row past $n / 2$ keep track of which column it comes from in row $n / 2$

		0	1	2	3	4	5	6	7
a	t	c	a	c	a	c			
0		0	1	2	3	4	5	6	7
1	t	1	2	1	2	3	4	5	6
2	c	2	3	2	1	2	3	4	5
3	a	3,0	$2,0 \rightarrow 3,0$	2,3	$1,3 \rightarrow 2,3 \rightarrow 3,3 \rightarrow 4,3$				
4	t	4,0	3,0	$2,0 \rightarrow 3,0$	$2,3 \rightarrow 3,3 \rightarrow 4,3 \rightarrow 5,3$				

The function $E D^{\prime}(A, B)$ returns column:

Space Efficient Solution

for $i=1$ to n
for $j=1$ to m
if (A[i] == B[j])
R[j] = Rprev[j-1]
else
$R[j]=1+\min (\operatorname{Rprev}[j], R[j-1]) ;$
Rprev[0..m] $=\mathrm{R}[0 . \mathrm{m}]$
Requires only $O(m)$ space.
What is the problem?

Space efficient solution

Now solve recursively:

0	1	2	3	4	5	6	7
1	2	1	2	3	4	5	6
2	3	2	1	2	3	4	5
3,0	2,0	3,0	2,3	1,3	2,3	3,3	4,3
4,0	3,0	2,0	3,0	2,3	3,3	4,3	5,3

function $\operatorname{RecED}(A, B)=$
$k=E D^{\prime}(A, B)$
concatenate $\operatorname{RecED}(A[1 . . n / 2], B[1 . . k])$ then $\operatorname{Rec} E D(A[n / 2 . n], B[k . . m])$

Space Efficient Solution

Time:

$T(n, m)=T(n / 2, k)+T(n / 2, m-k)+O(n m)$
$=O(n m)$
Space:
$S(n, m)=O(m)$ for ED' and $O(m+n)$ for result $=O(n+m)$

Viewing as a Graph

Edit distance can be expressed as find the shortest path in the following graph:
start

How many vertices will Dijkstra's algorithm visit as a function of n, m and distance d ?

15-853
Page 23

Improving Time Bounds

For many applications (e.g. diff), the difference between strings tends to be small. Can we do something better for this case?
This idea was exploited by Myers and Ukkonen (independenty) in 1985. Now the basis for GNU Diff.

Dijkstra's algorithm (review)

Single source $\left(v_{s}\right)$ single destination (v_{d}) shortest path $d(v)=\infty$ for all $v \neq v_{s}$
$d\left(v_{s}\right)=0$
$Q=$ new empty queue
insert(Q, v_{s})
While $\min (Q) \neq v_{d}$
$v=\operatorname{deleteMin}(Q)$

for each neighbor v^{\prime} of $v \quad$ Frontier (in Q)
$d\left(v^{\prime}\right)=\min \left(d\left(v^{\prime}\right), d(v)+\right.$ weight $\left.\left(v, v^{\prime}\right)\right)$
insert $\left(Q, v^{\prime}\right)$ or decreaseKey $\left(Q, v^{\prime}\right)$ if there
Takes $|E|$ inner iterations, each taking $O(\log |V|)$ time. Can be improved to $O(|E|+|V| \log |V|)$ time.
${ }_{15-853} \quad$ Page 24

Bounding Visited Vertices

Theorem: edit distance to $(i, j) \geq|j-i|$
Proof: every step away from the diagonal is along a horizontal or vertical edge. Each such edge contributes 1 , so the total distance, must be at least the distance from the diagonal

Corollary: Dijkstra's algorithm visits at most $\min (n, m) * 2 d$ vertices.searched vertices

d Page 25

Optimizing Space

Use recursive trick from before

Problem: We do not know d ahead of time. Scanning row by row will not work without d.
Need to bound size of frontier.

Bounding time

Priority Queue can be kept in constant time per operation (basically a modified breadth-firs \dagger search), so total time is $O(\min (n, m) d)$.
In practice this can be much less than $O(n m)$.

What about space?

Increasing Band-Widths

Start with band of $|m-n|$ and double on each step until large enough

Visits at most twice as many vertices as it should.
Visits at most twice as many vertices as it should.

