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15-853:Algorithms in the Real World 

Computational Biology I 
–  Introduction 
–  Longest Common Subsequence and 

Edit Distance 
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DNA 
DNA: suquence of base-pairs (bp): 

{A, C, T, G} 

Human Genome  
about 3 × 109 bps divided into 

46 chromosomes with between  
5 × 107 and 25 × 107 bps each 

Each chromosome is a sequence of base-pairs 

DNA is used to generate proteins:  

DNA mRNA Protein 
transcription translation 
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Proteins 
Proteins: sequence of Amino Acids 

{gly, trp, cys, …} 
Each DNA bp triple (a “codon”) forms 1 amino acid 

Since there are 64 possible codons, this is a 
many to one mapping.   Some triples have special 
meanings, e.g. EOF. 

Chromosomes are partitioned into genes each of 
which codes a protein.   Some regions of the 
chromosome do not code anything (intergene DNA). 

gene 1 gene 3 gene 2 
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Form and Function 
The Amino Acid sequence determines the protein’s 

3d structure .   The structure is also be affected 
by the environment. 
–  The primary structure refers to the amino acid 

sequence. 
–  The secondary structure refers to general 

configuration into alpha helixs and beta sheets 
–  The tertiary structure refers to the full 3d 

structure 
Protein’s 3d structure determines its function. 
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Some Goals in Molecular Biology 
1.  Extract genome sequence for various organisms. 
2.  Determine what proteins they code. 
3.  Determine structure and purpose of coded 

proteins. 
Goals 2. and 3. can often be aided by matching 

genome or protein sequences to previously 
studied sequences 

Use to: 
–  study and cure genetic diseases 
–  design drugs 
–  study evolution 
–  understand molecular processes 
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Example of MS 
Multiple Sclerosis is a disease in which the immune 

system attacks the myelin sheaths of nerve cells 
Conjecture: The immune system T-cells incorrectly 

identify the myelin sheaths as a virus or bacteria 
from an earlier infection. 

This was tested by comparing the proteins sequences  
of myelin sheaths with a database of viral and 
bacterial proteins. 

The ones that matched were tested in the 
laboratory to see if they were attacked by the T-
cells.   Some were. 
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Matching and Sequence Alignment 
How similar are: 

actagtctac 
cgacgtcgata  ? 

Allow for: 
mutations:   x to y 
insertions:   _ to y 
deletions:    x to _ 

e.g. 
acta_gtc__tac 
 | | |||  || 
_cgacgtcgata_ 

1 mutation 
3 insertions 
2 deletions 

“indels” 
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Applications of matching and alignment 
Used in many ways in computational biology 

–  Sequencing (finding the sequence of DNA or 
Proteins) 

–  Physical mapping (locating unique tags in DNA) 
–  Database searches (does this DNA match any 

other DNA?) 
–  Evolutionary trees (how similar are two 

species?) 
Before talking about the general matching problem in 

computational Biology, we will talk about a closely 
related, but simpler problem: longest common 
subsequence (LCS)  



3


15-853 Page 9 

Longest Common Subsequence 
Subsequence (⊆): Any subset of the elements of a 

sequence that maintain relative order 
e.g.   A = a1a2a3a4a5a6 
        A’ = a2a4a5     (a subsequence of A) 
        A’ = a2a1a5      (not a subsequence of A) 
Longest Common Subsequence (LCS):  
   LCS(A,B) = C, where C ⊆ A, C ⊆ B, |C| is 

maximized 
e.g.   A = a b a c d a c 
        B =  c a d c d d c 
        C =  a c d c              |C| = 4 
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Minimum Edit Distance 
Minimum Edit Distance:  D(A,B) = minimum # of 

insertions and deletions needed to change A to B. 
e.g.   A = a b a c d a c 
         B = c a d c d d c 

Claim: D(A,B) = |A| + |B| - 2|LCS(A,B)| 
Proof outline: 
     C = LCS(A,B) 
     A – C = deletions,           B – C = insertions 
     #deletions = |A| - |C|    #insertions = |B| - |C| 
     This reduction works both ways, hence equality. 

delete 
insert 
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Applications 
Unix diff:  

Find Minimum Edit Distance and print edits 
GNU diff based on algorithm by Eugene Myers, 

who is VP of Informatics at Celera 
Screen redisplay: 

Find minimum number of changes that need to be 
sent to the display along a “skinny” wire. 

Used, for example, by Emacs. 
Computational biology: 

This will use generalizations of LCS, but the 
algorithms will work with slight modifications. 
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Outline 
Will work our way up to the GNU diff algorithm 

–  Recursive solution 
–  Memoized solution 
–  Dynamic programming 
–  Memory efficient solution 
–  Myers/Ukkonon algorithm 
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Recursive Solution 

Note that this just returns the edit distance, but it 
is easy to include the edits. 

Can work from start or end (here from end). 
Why does it work? 
What is the running time? 

D(A, empty) = |A|        delete(A) 
D(empty, B) = |B|         insert(B) 
D(A:x, B:x) = D(A, B) 
D(A:a, B:b) = min(1 + D(A:a, B), 1 + D(A, B:b))  

insert(b) delete(a) 

15-853 Page 14 

Recursive Solution 
Convert to use indices 

int ED(int i, int j) { 
if (i==0) r = j; 
if (j==0) r = i;  
if (A[i] == B[j])  
   r = ED(i-1,j-1); 
else 
   r = min(1 + ED(i-1,j), 1 + ED(i,j-1)); 
return r; 

} 

ED(n,m); 

What is the running 
time? 

15-853 Page 15 

Memoized Solution 
int ED(int i, int j) { 

if (M[i,j] != -1) return M[i,j]; 
if (i==0) r = j; 
if (j==0) r = i;  
if (A[i] == B[j])  
   r = ED(i-1,j-1); 
else 
   r = min(1 + ED(i-1,j), 1 + ED(i,j-1)); 
return M[i,j] = r; 

} 

M[1..n,1..m] = -1; 
ED(n,m); 
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Dynamic programming 
for i = 1 to n 
   M[i,1] = i; 
for j = 1 to m 
   M[1,j] = j; 

for i = 1 to n 
  for j = 1 to m 
    if (A[i] == B[j])  
      M[i,j] = M[i-1,j-1]; 
    else  
      M[i,j] = 1 + min(M[i-1,j],M[i,j-1]); 
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Example 

Note: can be filled in any order as long as the cells to 
the left and above are filled. 

Can follow path back through matrix to construct edits. 

a t c a c a c 

0 1 2 3 4 5 6 7 

t 1 2 1 2 3 4 5 6 

c 2 3 2 1 2 3 4 5 

a 3 2 3 2 1 2 3 4 

t 4 3 2 3 2 3 4 5 

A 

B 

insert 
delete 
common 
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Space Efficient Solution 
for i = 1 to n 
  for j = 1 to m 
    if (A[i] == B[j])  
      R[j] = Rprev[j-1]; 
    else  
      R[j] = 1 + min(Rprev[j],R[j-1]); 
  Rprev[0..m] = R[0..m] 

Requires only O(m) space. 
What is the problem? 
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Space Efficient Solution  
For each entry in a row past n/2 keep track of which 

column it comes from in row n/2. 

0 1 2 3 4 5 6 7 

a t c a c a c 

0 0 1 2 3 4 5 6 7 

1 t 1 2 1 2 3 4 5 6 

2 c 2 3 2 1 2 3 4 5 

3 a 3,0 2,0 3,0 2,3 1,3 2,3 3,3 4,3 

4 t 4,0 3,0 2,0 3,0 2,3 3,3 4,3 5,3 
The function ED’(A,B) returns column:  
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Space efficient solution 
Now solve recursively:     

0 1 2 3 4 5 6 7 

1 2 1 2 3 4 5 6 

2 3 2 1 2 3 4 5 

3,0 2,0 3,0 2,3 1,3 2,3 3,3 4,3 

4,0 3,0 2,0 3,0 2,3 3,3 4,3 5,3 

function RecED(A,B) = 
    k = ED’(A,B) 
    concatenate RecED(A[1..n/2],B[1..k])  

        then RecED(A[n/2..n],B[k..m]) 

k 
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Space Efficient Solution 
Time: 

T(n,m) = T(n/2,k) + T(n/2,m-k) + O(nm) 
           = O(nm) 

Space: 

S(n,m) = O(m) for ED’ and O(m + n) for result 
           = O(n+m) 
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Improving Time Bounds 
For many applications (e.g. diff), the difference 

between strings tends to be small.   Can we do 
something better for this case? 

This idea was exploited by Myers and Ukkonen 
(independenty) in 1985.   Now the basis for GNU 
Diff. 
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Viewing as a Graph 
Edit distance can be expressed as find the shortest 

path in the following graph: 
_ a c t a 

_ 
t 
a 
t 
a 

weight = 1 

weight = 0 
(only when chars match) 

How many vertices will Dijkstra’s algorithm visit as a 
function of n, m and distance d? 

start 

end 

Single source (vs) single destination (vd) shortest path 
d(v) = ∞ for all v ≠ vs 
d(vs) = 0 
Q = new empty queue 
insert(Q, vs) 
While min(Q) ≠ vd 

  v = deleteMin(Q) 
     for each neighbor v’ of v 
         d(v’) = min(d(v’), d(v) + weight(v,v’)) 

      insert(Q,v’) or decreaseKey(Q,v’) if there 
Takes |E| inner iterations, each taking O(log |V|) time.   

Can be improved to O(|E| + |V|log|V|) time. 
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Dijkstra’s algorithm (review) 

Finished 
vs 

v 
v’ vd 

Frontier (in Q) 
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Bounding Visited Vertices 
Theorem: edit distance to (i,j) ≥ |j-i| 
Proof: every step away from the diagonal is along a 

horizontal or vertical edge.   Each such edge 
contributes 1, so the total distance, must be at 
least the distance from the diagonal 

Corollary:  Dijkstra’s algorithm visits at most 
min(n,m)*2d vertices. 

searched vertices 
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Bounding time 
Priority Queue can be kept in constant time per 

operation (basically a modified breadth-first 
search), so total time is O(min(n,m) d). 

In practice this can be much less than O(nm). 

What about space? 
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Optimizing Space 
Use recursive trick from before 

Problem:  We do not know d ahead of time.  Scanning 
row by row will not work without d. 

Need to bound size of frontier.  
15-853 Page 28 

Increasing Band-Widths 
Start with band of |m-n| and double on each step 

until large enough 

Visits at most twice as many vertices as it should. 


