
1

15-853 Page 1

15-853:Algorithms in the Real World

Computational Biology I
–  Introduction
–  Longest Common Subsequence and

Edit Distance

15-853 Page 2

DNA
DNA: suquence of base-pairs (bp):

{A, C, T, G}

Human Genome
about 3 × 109 bps divided into

46 chromosomes with between
5 × 107 and 25 × 107 bps each

Each chromosome is a sequence of base-pairs

DNA is used to generate proteins:

DNA mRNA Protein
transcription translation

15-853 Page 3

Proteins
Proteins: sequence of Amino Acids

{gly, trp, cys, …}
Each DNA bp triple (a “codon”) forms 1 amino acid

Since there are 64 possible codons, this is a
many to one mapping. Some triples have special
meanings, e.g. EOF.

Chromosomes are partitioned into genes each of
which codes a protein. Some regions of the
chromosome do not code anything (intergene DNA).

gene 1 gene 3 gene 2

15-853 Page 4

Form and Function
The Amino Acid sequence determines the protein’s

3d structure . The structure is also be affected
by the environment.
–  The primary structure refers to the amino acid

sequence.
–  The secondary structure refers to general

configuration into alpha helixs and beta sheets
–  The tertiary structure refers to the full 3d

structure
Protein’s 3d structure determines its function.

2

15-853 Page 5

Some Goals in Molecular Biology
1.  Extract genome sequence for various organisms.
2.  Determine what proteins they code.
3.  Determine structure and purpose of coded

proteins.
Goals 2. and 3. can often be aided by matching

genome or protein sequences to previously
studied sequences

Use to:
–  study and cure genetic diseases
–  design drugs
–  study evolution
–  understand molecular processes

15-853 Page 6

Example of MS
Multiple Sclerosis is a disease in which the immune

system attacks the myelin sheaths of nerve cells
Conjecture: The immune system T-cells incorrectly

identify the myelin sheaths as a virus or bacteria
from an earlier infection.

This was tested by comparing the proteins sequences
of myelin sheaths with a database of viral and
bacterial proteins.

The ones that matched were tested in the
laboratory to see if they were attacked by the T-
cells. Some were.

15-853 Page 7

Matching and Sequence Alignment
How similar are:

actagtctac
cgacgtcgata ?

Allow for:
mutations: x to y
insertions: _ to y
deletions: x to _

e.g.
acta_gtc__tac
 | | ||| ||
cgacgtcgata

1 mutation
3 insertions
2 deletions

“indels”

15-853 Page 8

Applications of matching and alignment
Used in many ways in computational biology

–  Sequencing (finding the sequence of DNA or
Proteins)

–  Physical mapping (locating unique tags in DNA)
–  Database searches (does this DNA match any

other DNA?)
–  Evolutionary trees (how similar are two

species?)
Before talking about the general matching problem in

computational Biology, we will talk about a closely
related, but simpler problem: longest common
subsequence (LCS)

3

15-853 Page 9

Longest Common Subsequence
Subsequence (⊆): Any subset of the elements of a

sequence that maintain relative order
e.g. A = a1a2a3a4a5a6
 A’ = a2a4a5 (a subsequence of A)
 A’ = a2a1a5 (not a subsequence of A)
Longest Common Subsequence (LCS):
 LCS(A,B) = C, where C ⊆ A, C ⊆ B, |C| is

maximized
e.g. A = a b a c d a c
 B = c a d c d d c
 C = a c d c |C| = 4

15-853 Page 10

Minimum Edit Distance
Minimum Edit Distance: D(A,B) = minimum # of

insertions and deletions needed to change A to B.
e.g. A = a b a c d a c
 B = c a d c d d c

Claim: D(A,B) = |A| + |B| - 2|LCS(A,B)|
Proof outline:
 C = LCS(A,B)
 A – C = deletions, B – C = insertions
 #deletions = |A| - |C| #insertions = |B| - |C|
 This reduction works both ways, hence equality.

delete
insert

15-853 Page 11

Applications
Unix diff:

Find Minimum Edit Distance and print edits
GNU diff based on algorithm by Eugene Myers,

who is VP of Informatics at Celera
Screen redisplay:

Find minimum number of changes that need to be
sent to the display along a “skinny” wire.

Used, for example, by Emacs.
Computational biology:

This will use generalizations of LCS, but the
algorithms will work with slight modifications.

15-853 Page 12

Outline
Will work our way up to the GNU diff algorithm

–  Recursive solution
–  Memoized solution
–  Dynamic programming
–  Memory efficient solution
–  Myers/Ukkonon algorithm

4

15-853 Page 13

Recursive Solution

Note that this just returns the edit distance, but it
is easy to include the edits.

Can work from start or end (here from end).
Why does it work?
What is the running time?

D(A, empty) = |A| delete(A)
D(empty, B) = |B| insert(B)
D(A:x, B:x) = D(A, B)
D(A:a, B:b) = min(1 + D(A:a, B), 1 + D(A, B:b))

insert(b) delete(a)

15-853 Page 14

Recursive Solution
Convert to use indices

int ED(int i, int j) {
if (i==0) r = j;
if (j==0) r = i;
if (A[i] == B[j])
 r = ED(i-1,j-1);
else
 r = min(1 + ED(i-1,j), 1 + ED(i,j-1));
return r;

}

ED(n,m);

What is the running
time?

15-853 Page 15

Memoized Solution
int ED(int i, int j) {

if (M[i,j] != -1) return M[i,j];
if (i==0) r = j;
if (j==0) r = i;
if (A[i] == B[j])
 r = ED(i-1,j-1);
else
 r = min(1 + ED(i-1,j), 1 + ED(i,j-1));
return M[i,j] = r;

}

M[1..n,1..m] = -1;
ED(n,m);

15-853 Page 16

Dynamic programming
for i = 1 to n
 M[i,1] = i;
for j = 1 to m
 M[1,j] = j;

for i = 1 to n
 for j = 1 to m
 if (A[i] == B[j])
 M[i,j] = M[i-1,j-1];
 else
 M[i,j] = 1 + min(M[i-1,j],M[i,j-1]);

5

15-853 Page 17

Example

Note: can be filled in any order as long as the cells to
the left and above are filled.

Can follow path back through matrix to construct edits.

a t c a c a c

0 1 2 3 4 5 6 7

t 1 2 1 2 3 4 5 6

c 2 3 2 1 2 3 4 5

a 3 2 3 2 1 2 3 4

t 4 3 2 3 2 3 4 5

A

B

insert
delete
common

15-853 Page 18

Space Efficient Solution
for i = 1 to n
 for j = 1 to m
 if (A[i] == B[j])
 R[j] = Rprev[j-1];
 else
 R[j] = 1 + min(Rprev[j],R[j-1]);
 Rprev[0..m] = R[0..m]

Requires only O(m) space.
What is the problem?

15-853 Page 19

Space Efficient Solution
For each entry in a row past n/2 keep track of which

column it comes from in row n/2.

0 1 2 3 4 5 6 7

a t c a c a c

0 0 1 2 3 4 5 6 7

1 t 1 2 1 2 3 4 5 6

2 c 2 3 2 1 2 3 4 5

3 a 3,0 2,0 3,0 2,3 1,3 2,3 3,3 4,3

4 t 4,0 3,0 2,0 3,0 2,3 3,3 4,3 5,3
The function ED’(A,B) returns column:

15-853 Page 20

Space efficient solution
Now solve recursively:

0 1 2 3 4 5 6 7

1 2 1 2 3 4 5 6

2 3 2 1 2 3 4 5

3,0 2,0 3,0 2,3 1,3 2,3 3,3 4,3

4,0 3,0 2,0 3,0 2,3 3,3 4,3 5,3

function RecED(A,B) =
 k = ED’(A,B)
 concatenate RecED(A[1..n/2],B[1..k])

 then RecED(A[n/2..n],B[k..m])

k

6

15-853 Page 21

Space Efficient Solution
Time:

T(n,m) = T(n/2,k) + T(n/2,m-k) + O(nm)
 = O(nm)

Space:

S(n,m) = O(m) for ED’ and O(m + n) for result
 = O(n+m)

15-853 Page 22

Improving Time Bounds
For many applications (e.g. diff), the difference

between strings tends to be small. Can we do
something better for this case?

This idea was exploited by Myers and Ukkonen
(independenty) in 1985. Now the basis for GNU
Diff.

15-853 Page 23

Viewing as a Graph
Edit distance can be expressed as find the shortest

path in the following graph:
_ a c t a

_
t
a
t
a

weight = 1

weight = 0
(only when chars match)

How many vertices will Dijkstra’s algorithm visit as a
function of n, m and distance d?

start

end

Single source (vs) single destination (vd) shortest path
d(v) = ∞ for all v ≠ vs
d(vs) = 0
Q = new empty queue
insert(Q, vs)
While min(Q) ≠ vd

 v = deleteMin(Q)
 for each neighbor v’ of v
 d(v’) = min(d(v’), d(v) + weight(v,v’))

 insert(Q,v’) or decreaseKey(Q,v’) if there
Takes |E| inner iterations, each taking O(log |V|) time.

Can be improved to O(|E| + |V|log|V|) time.
15-853 Page 24

Dijkstra’s algorithm (review)

Finished
vs

v
v’ vd

Frontier (in Q)

7

15-853 Page 25

Bounding Visited Vertices
Theorem: edit distance to (i,j) ≥ |j-i|
Proof: every step away from the diagonal is along a

horizontal or vertical edge. Each such edge
contributes 1, so the total distance, must be at
least the distance from the diagonal

Corollary: Dijkstra’s algorithm visits at most
min(n,m)*2d vertices.

searched vertices

d 15-853 Page 26

Bounding time
Priority Queue can be kept in constant time per

operation (basically a modified breadth-first
search), so total time is O(min(n,m) d).

In practice this can be much less than O(nm).

What about space?

15-853 Page 27

Optimizing Space
Use recursive trick from before

Problem: We do not know d ahead of time. Scanning
row by row will not work without d.

Need to bound size of frontier.
15-853 Page 28

Increasing Band-Widths
Start with band of |m-n| and double on each step

until large enough

Visits at most twice as many vertices as it should.

