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ABSTRACT

Galaxy spectrometry is an important tool for astronomical research. For a given galaxy
spectrum, techniques like wavelet transformation, regression splines, parametric de-
convolution, etc., can be applied to estimate the spectral function. However, in many
cases, the observed spectrum is the mixture of a smooth continuum and some super-
imposed spiky lines. The convolution of these two components makes these techniques
ineffective. In this paper, we propose a unified regression framework, named sparse
composite model, for galaxy spectral function estimation. Assuming that all spectral
functions can be decomposed into a smooth continuum and the spiky lines, our model
represents them using different bases in a sparse manner. This sparse composite model
approach has good theoretical guarantees and is very efficient and effective when facing
large scale datasets.
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I. Introduction

Galaxy spectrometry is an important tool for modern astronomical investigations, enabling

astronomers to compare and study galaxy properties in a quantitative manner (Carroll and

Ostlie, 1996). A spectrum is a plot of the intensity of the object as a function of wavelength

of light. More specifically, a galaxy spectrum is a x − y graph with wavelength on the

x-axis measured in Ångstroms (1Å = 1× 10−10 meters) and a measure of brightness called

flux (derived from binned photons counts) on the y-axis. The study of galaxy spectra can

reveal information about both continuum processes (e.g. blackbody surface temperature,

nonthermal processes) and quantum processes (e.g. absorption and emission lines from

electron transitions in heated atoms of various elements).

Each process embodies a corresponding component in the observed spectrum. The smooth

continuum component is caused by the combination of a range of blackbody emitters, mainly

dense gases or solid objects which radiate heat. The radiation is over a broad range of

wavelengths, making the resulting spectrum fairly smooth and continuous. The discrete,

non-continuous spiky lines are an observable result of a combination of two sub-processes:

the emission and absorption processes. The galaxy emission process is mainly due to gas

being heated and then re-radiating energy at specific and distinct wavelength, the fact that

each element on the periodic table has its own set of possible energy levels makes the resulted

spectrum discrete. If light from a steller core with a continuous spectrum encounters an

atom, the wavelengths corresponding to possible energy transitions within the atom will be

absorbed. This results in the absorbtion process. If the emission process dominates the

absorbtion process, we will observe a very positive spiky line. On the contrary, a negative

spiky line is expected. The left subplot of Figure 1 shows a typical galaxy spectrum with

the possible spiky line positions superimposed as dashed lines. The right subplot illustrates

its variance function at different wavelength, we see that it is highly heteroscedastic.

Galaxy spectra are heavily studied both to understand galaxy properties and to map the

luminous mass in the Universe via their redshifts (a surrogate for distance). These properties

include the radial velocity of the galaxy (Wakker and van Woerden, 1997), the star-formation

rate (Heavens et al., 2004), the kinematics of the galaxy (Saha and Williams, 1994), the aver-

age age and metalicity of the stellar populations (Vazdekis and Arimoto, 1999; Moller et al.,

1997), etc.. Especially, the continuum and spiky lines tell us completely different stories

about the galaxy. The smooth continuum reveals the metallicity of the steller populations,

the mass and the radial velocity of the galaxy, etc.. The spiky lines convey the age and

temperature information of the steller populations. Due to these fact, a statistically jus-

tifiable model which could accurately estimate the smooth continuum and the spiky lines

should be significantly helpful for the study of galaxy properties. A reasonable model should

satisfy the following properties: (i) The model should be able to estimate the continuum

and the spiky lines accurately; (ii) The model should be based on some well-defined statis-

2



tical principles; (iii) The model should have some physical meanings; (iv) The model should

be computationally efficient when facing huge datasets. From a statistician’s perspective,

each length-n spectrum can be represented as n data points (x1, Y1), ..., (xn, Yn), where each

(xi, Yi) represents the observed flux value Yi at the wavelength xi, (i = 1, ..., n). Without

lose of generality, we assume that xi is renormalized to lie in the interval [0, 1]. Denote

Y = (Y1, ..., Yn) and X = (x1, ..., xn). assuming the observed spectrum value Yi comes

from an unknown spectral function m(xi) plus some independent measurement error εi. It’s

natural to model this problem under a regression framework (Weisberg, 2005):

Yi = m(xi) + εi, where εi ∼ N (0, σ2
i ) i = 1, ..., n (1.1)

Many existing methods, like wavelet transformation, regression splines, and parametric de-

convolution, etc., can solve this regression problem and accurately estimate the function

m(x) with the desired properties (ii),(iii), (iv) mentioned above. However, what we are really

interested in is not m(x), our task is to accurately estimate the two underlying components

that generate m(x), i.e. assuming m(x) = f(x)+ g(x), where f(x) represents the continuum

component, while g(x) represent the spiky line component, we are interested in finding the

underlying f and g based on the observation of Y . Without extra assumptions, simultaneous

estimation of both f(x) and g(x) is an ill-posed problem, since if f̂(x) and ĝ(x) are estimated

functions according to a given criterion, then for any constant c, f̂(x) + c and ĝ(x) − c

should also be solutions. This un-uniqueness makes the problem ill-posed. we call it the

decomposition problem. More related discussion could be found in Li and Speed (2000a,b).

The only way to solve this ill-posed problem is by adding more assumptions and constraints.

One idea is to use different bases to approximate the continuum component f(x) and the

spiky line component g(x), this corresponds to a composite model approach (Sun, 2000).

However, the inference of the composite model is based on some heuristic rules, which is

hard to justify.

This paper moves towards the solution to these challenges. Our methods are embodies in

a unified framework named sparse composite models. The basic idea is that each galaxy

spectrum is decomposed into two unknown components: the smooth continuum and the

spiky lines. Different components are represented by a linear combination of basis functions

from different bases. To tackle the hardness of finding an unique solution in an overcomplete

dictionary, we enforce a sparseness constraint, the model can be inferences by basis pursuit

or matching pursuit techniques. In statistical terms, this corresponds to “regularize” the

estimator. The reason that this regularization technique is helpful to make a better estima-

tion can be traced back to Tikhonov (1963); Chen et al. (1998). Using this approach, the

key issues are how to design suitable basis functions for the overcomplete dictionary; how

to find a small group of basis functions which could simultaneous represent different galaxy

spectra while still achieving sufficient accuracy; how to conduct inference if we do not have

any prior information about the spiky line locations; more importantly, the whole work flow

should be computationally efficient to make it practically useful. With all these require-
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Figure 1: Left: Plot of a typical galaxy spectrum with possible line positions superimposed.

Right: Plot of the standard deviation function at different wavelengths

ments in mind, we develop a hierarchy of methods to inference sparse composite models: (i)

data-adaptive basis pursuit/matching pursuit (DABP/DAMP), (ii) overcomplete dictionary

basis pursuit/matching pursuit (ODBP/ODMP), and (iii) simultaneous orthogonal match-

ing pursuit (SOMP). They achieve increasingly stronger conclusions, but at the price of

assumptions which are correspondingly more detailed and possibly less reliable. Under the

spare composite model framework, simultaneous confidence interval estimation techniques,

like, the Scheffé bands and the Tube’s bands, can be directly applied. Also, robust versions of

different methods using the least absolute deviation Lasso (LAD-Lasso) are also developed,

which is expected to better handle the possible heavy-tailed errors or outliers encountered

in the galaxy spectra analysis. We test the performance of all these models using both syn-

thetic and real-world datasets and find that ODMP and SOMP outperform the remaining

methods, they achieve very good estimate of the spectral functions and the simultaneous

confidence bands are very tight. They should be suitable the models which can meet all the

above mentioned criteria.

The paper is organized as the following: In section II, we briefly review and compare the pre-

vious representation models and summarize the related work. Section III formally presents

our sparse composite model framework and the basic ideas of basis/matching pursuit, dif-

ferent theoretical grantees are given in this section. Section IV illustrates five inference

methods (DABP, DAMP, ODBP, ODMP, SOMP) and how to design robust basis pursuit

method using least absolute deviation Lasso. Section V discusses how to obtain the simul-

taneous confidence band for the degenerate linear models (e.g. Bonferroni bands, Scheffé

bands, Tube’s bands, and the bootstrapping bands). Section VI mainly focus on the numer-

ical results of different models from both synthetic and real-world experiments. Section VII

gives an overall conclusion and the possible future research directions.

4



II. Related Work

Many methods have been developed for representing and estimating general spectral func-

tions. According to their modeling assumptions, these methods can be roughly classified into

four categories: the ad hoc approach (AHA), the fully parametric approach (FPA), the semi-

parametric approach (SPA), and the linear model approach (LMA). A brief summarization

and comparison of different methods will be given out in this section.

A. Ad hoc Approach

The ad hoc approach is currently adopted by the SDSS spectroscopic pipeline1. It assumes

that all the possible spiky line locations are already known. According to this method, the

smooth continuum and the spiky lines are separately fitted in two stages, the procedures of

these two stages are based on some intuitive, but fairly heuristic rules : To fit the continuum,

a sliding window of length 300 data points is created. Observations closer than 8 data points

to any reference line are masked (i.e. not really detectable) and not used in the continuum

measurement. The remaining data points are ordered and the values between the 40th and

60th percentile are averaged to give the continuum fitting. After the first stage, spiky line

fitting is performed twice in the SDSS spectroscopic pipeline. The first time it is done as

part of finding characteristic emission lines in order to measure what is called an emission

line redshift. Wavelet filters can be used in this step to locate strong emission features in

the spectrum. Secondly, after the redshift has been determined, all possible lines are finely

searched and accurately measured again. Every line in the reference list is fit as a single

narrow Gaussian, say N (µ, σ2), on top of the continuum subtracted spectrum. Lines that are

deemed close enough are fitted simultaneously as a blend. The basic line fitting is essentially

based on the Levenberg − Marquardt nonlinear least square method (Nocedal and Wright,

1999). Parameters are constrained to fall within certain values by multiplying the returned

sum of squares by a step function. Generally, the parameter σ is constrained in the interval

(0.5Å ,100Å). The final constrained least square problem can be solved using some standard

optimization package.

Even though the ad hoc method is intuitively sound, it’s criticized due to the lack of both

physics meaning and statistical guarantees. Especially when our task is trying to provide

scientific evidence to some proposed physics theory, this ad hoc approach is obvious not

suitable due to its lack of justification.

B. Fully Parametric Approach

A fully parametric approach is developed by van Dyk and his Harvard colleagues in a series

of papers (Hans and van Dyk, 2003; van Dyk et al., 2001, 2002). Essentially, they use a

1see http://www.sdss.org
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nonlinear hierarchical Bayesian Poisson regression models to estimate the galaxy spectral

functions. They assume that the given spectrum Y has only L levels and is generated from

an L× 1 vector of Poisson counts with independent components, i.e.

Yl ∼ Poisson(λl), l ∈ {1, ..., L} (2.1)

where Λ = (λ1, ..., λL) is the vector of expected counts. Λ is modeled in a parametric form

Λ = PAµ + ξ (2.2)

where µ is the true function we are interested in, P is used to model instrument effect, A is

used to model the detector effect, and ξ is an L × 1 vector, used to model the background

effect in each level. More detailly, if the observed spectrum is assumed from J bins, because

of the instrument effect, plj is the probability that a photon corresponding to the ideal bin

j is recorded by the detector in bin l, thus P = {plj}j=1,...,J
l=1,...,L is the parameter matrix used to

model this instrument effect. A = {aij}j=1,...,J
i=1,...,J is a J × J diagnoal matrix, each element ajj

represents the probability that a photon arrives at the detector corresponding to the ideal

bin j. The whole model inference is conducted under a hierarchial Bayesian framework.

The most interesting part of this approach is that it incorporates a lot of physics assumptions

into parametric statistical models. The model inference is computationally intensive, but

is still tractable. However, the success of this approach crucially relies on the validity of

the modeling assumptions, which limits the effectiveness of this model. From a statistical

point of view, we hope the model can be flexible enough and be more data-driven. This is

especially important when we are trying to provide support for some scientific claims.

C. Semiparametric Approach

The semiparametric approach is mainly proposed by Brutti et al. (2005). By their approach,

sieved penalized regression spline is used to model the continuum component, while the spiky

lines are fitted using a profile likelihood method with each spikes modeled as a narrow Gaus-

sian density function. The whole inference process proceeds in an iterative manner: First,

a fully parametric approach is used to get a pilot estimate. Then, the estimated continuum

is refit using the regression splines. Further, the parameters in the profile likelihood for the

spiky lines are re-estimated using the continuum subtracted spectrum. More specifically,

a confidence “envelope” around the nonparametric fit is built and then propagate to the

parametric component. Therefore, simultaneous confidence bands can be obtained in this

manner. This approach is intuitively interesting and computationally efficient. However,

it’s very hard to analyze the properties of such an estimator due to its iterative algorithm,

another problem is that the confidence band generated by this iterative approach tends to

be too conservative, see Brutti et al. (2005).

Another interesting semiparametric method is called composite models, which are first pro-

posed by Sun (2000) in the area of of image analysis. The composite model assumes that
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each spectral function can be decomposed into a smooth component and a spiky component.

The Fourier basis are used to model the smooth component and the Dirac δ-function is used

to model the spiky lines. The analytical form of the composite model is

Yi =
m∑

j=0

{
aj cos

(
2πjxi

n

)
+ bj sin

(
2πjxi

n

)}
+

M∑

k=1

wkδ(xi − lk) (2.3)

where a list of pairs (l1, w1), ..., (lM , wM) represent the locations and weights of different

spiky lines. All these information is known as prior knowledge. Under the assumption that

each spectrum contains relatively few spiky lines, the author provides a generic proof that

all spectral functions can be represented through a small number of parameters using the

composite model. The powerful representation skill of this model in fact comes from the

use of an overcomplete dictionary, which is now a very sophisticated topic in the statistics

and signal processing communities. The drawback of this composite model approach is that

its inference is based on some very heuristic rules, and the locations of the spiky lines must

be known as a priori. In Sun (2000), the author simply suggests a heuristic value m = 31.

While the parameters aj, bj, j = 1, ..., m are estimated as

âj =
2

n

n∑

k=1

Yk cos

(
2πjxk

n

)
, b̂j =

2

n

n∑

k=1

Yk sin

(
2πjxk

n

)
, j = 0, ..., m (2.4)

After the continuum is gotten, the spiky lines can be fitted using the continuum subtracted

spectrum. In section III, we will illustrate a sparse version of this model, which is more

sophisticated and is based on some well studied statistical principles.

D. Linear Model Approach

Comparing with the previous methods, the linear model approach relies on fewer assumptions

and tends to be more “nonparametric”. It has not been widely used in the galaxy spectra

study, but has attracted a lot of attention in the image analysis community due to its

flexibilities and solid theoretical foundations (Forsyth, 1990; Drew and Funt, 1992; Marimont

and Wandell, 1992; Vrhel et al., 1994).

The key idea of the linear model approach is to augment/replace the wavelength vector

X = (x1, ..., xn) with p additional variables, denoted as φi(X) (i = 0, ..., p), which are

transformations of X, and then fit linear models in this new space of derived input features,

that is

m(x) =

p∑
i=0

βiφi(x) (2.5)

The coefficients β = (β0, ..., βp) is determined by the least square method

β̂ = arg min
β

n∑
i=1

(
Yi −

p∑
j=0

βjφj(xi)

)2

(2.6)
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Two special cases of the linear models are especially widely used in image analysis areas in

estimating general spectral functions: the point sampling method and the analytical method.

Point sampling method: If we set φj(x) = I(xj −∆x/2 ≤ x ≤ xj +∆x/2), this results in

the point sampling method. Which represents a spectral function defined on a continuous

wavelength region through its functional values at a set of uniformly sampled discrete points.

That is, let m(x) be evenly sampled from the range [0,1], the estimated value m̂(x) is

represented as

m̂(x) = Yi, for − ∆x

2
< x− xi <

∆x

2
(2.7)

where i = 1, ..., n and ∆x = 1/(n− 1).

This method is quite simple and intuitive, and has been widely used in the area of realistic

image synthesis. See Hall (1989); Gondek et al. (1994). However, one severe drawback of the

point sampling method is its difficulty in representing spectral functions with spiky lines.

This could be well understood with the Shannon’s sampling theorem (Marks, 1993), which

says that the necessary condition for a function to be perfectly represented by the sampling

method is that this function contains no components of frequencies

f ≥ fc ≡ 1

2∆x
(2.8)

where fc is called the Nyquist critical frequency and ∆x is the sampling interval. Due to the

existence of very spiky lines (which corresponds to high frequencies) in the galaxy spectra,

the point sampling method is inappropriate in our task.

Analytical method: If we set φj(x) = xj, this is the analytical method (Raso and Fournier,

1991; Geist et al., 1996). The analytical method is essentially a parametric polynomial model.

Unfortunately, the computation of polynomial fitting becomes numerically unstable when the

polynomial degree is larger than 7 (Forsythe, 1957). This severely limits the application of

the polynomial models for spectral function estimation.

The linear model approach has demonstrated advantages in both accuracy and computational

efficiency. However, for the purpose of galaxy spectral function estimation, the key issue for

the linear model approach is how to design suitable basis functions and how to find a small

group of basis functions which could simultaneously approximated all the galaxy spectra in

a big dataset. These important problems has not been addressed much. In the next section,

we have two models to handle these two problems.

A comparison of different existing approaches are summarized in table 1. The “assumption”

item means whether the method relies on very restricted assumption or not. The “Compu-

tation” item represents the computational burden of different methods. The “Physics” item

shows whether the model incorporates many physical assumptions. The “Stats” item shows

whether the model has much statistical meaning or not. The “Spike Pos” item indicate
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Table 1: Comparison among different methods

Method Assumption Computation Physics Stats Spike Pos Theory

AHA very weak Low Low Low known ×
FPA strong medium High Low known

√
SPA medium high Medium Medium known ×
LMA weak medium Low High known

√

whether the method needs the known spiky line positions as a modeling assumption. The

“Theory” item indicates whether the model has some well-justified statistical principles as

the theoretical guarantees. Of all these methods, each has different advantages but none

meets all the criteria. In comparison with them, the proposed sparse composite model has

a better balance among all these criteria.

III. Sparse Composite Models : Main Idea

In this section, we resent the basic concept of the sparse composite models. In the next

section, we will discuss five methods to fit sparse composite models. These five methods

are: (i) overcomplete dictionary basis pursuit/matching pursuit (ODBP/ODMP), (ii) data-

adaptive basis pursuit/matching pursuit (DABP/DAMP) and (iii) simultaneous orthogonal

matching pursuit (SOMP). The sparse composite models can be classified as linear models,

but emphasize more on the design of suitable basis functions for the problem domain of

galaxy spectral function estimation. Similar as the linear model method, we first expand

the wavelength vector to a bunch of basis functions using some carefully designed criterion.

Instead of performing a least square fit like the linear model method, we seek a sparse solution

to the estimated coefficients. What’s more, we are interested in choosing a small group of

basis functions which could best represent all the galaxy spectra in a large dataset. Therefore,

the spare composite models can be viewed as a hybridization of the basis pursuit or matching

pursuit techniques with the composite models. In the following, we will introduce the sparse

composite models using an overcomplete dictionary view. Then, basis pursuit, matching

pursuit and the uncertainty principles are briefly introduced. Many results in this section

can be found in a series of papers by Donoho and his Stanford groups (Donoho, 1992; Donoho

and Huo, 2001; Donoho, 2002; Elad and Bruckstein, 2002; Donoho et al., 2006; Donoho and

Elad, 2006). Also, a parallel and independent development of these results can be found

in Tropp et al. (2003); Tropp (2004, 2005, 2006).
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A. Sparse composite models: an overcomplete dictionary view

As is shown in equation (1.1), a galaxy spectrum is a spectral function contaminated with

some noise. The composite model approach assume that this spectral function can be de-

composed into the form of a smooth continuum and spiky line functions, that is

Yi = f(xi) + g(xi) + εi, where εi ∼ N (0, σ2
i ) (3.1)

Under the linear model framework, we want to use basis expansion to estimate the unknown

functions f(x) and g(x). However, due to the different characteristics of these two functions

(smooth vs. highly spiky). If only one basis is used, for instance, the Fourier base, it’s

expected to have a poor representation to estimate the highly localized spiky lines. How-

ever, if we use the very localized daubechie basis, it’s hard to estimate the very smooth

continuum. To overcome such difficulties, it’s very natural to represent the continuum and

the spiky lines using basis functions from different bases. More formally, assuming we use a

basis Ψf to represent function f(x), every elementary basis function in Ψf is globalize and

smooth, like Fourier basis. And another basis Ψg to represent the spiky line function g(x),

the basis functions in Ψg are more localized, like Daubechies functions or Dirac δ-function.

The combination of these two bases corresponds to an overcomplete dictionary D = [Ψf , Ψg].

Assuming that D = (φ1, φ2, ..., φp), it’s quite possible that n < p. Such an overcomplete rep-

resentation offers a wider range of generating basis functions, potentially, it’s more efficient

and flexible at task like estimating the galaxy spectral functions. For this, we want to find

a representation for

m̂(x) = f̂(x) + ĝ(x) =

p∑
i=1

β̂iφi(x) =
∑

φi∈Ψf

β̂iφi(x) +
∑

φj∈Ψg

β̂jφj(x) (3.2)

To find the estimate for f(x) and g(x) separately, it’s very natural to set f̂(x) =
∑

φi∈Ψf
β̂iφi(x)

and ĝ(x) =
∑

φj∈Ψg
β̂jφj(x). One drawback for this approach is that, due to the fact n < p,

the representation is undeterminable. From an algebraic view, the solution to equation (3.2)

is not unique. Also, the existence of noise in the observed spectrum makes our case worse.

To tackle this ill-posed problem, Donoho showed that if we assume the underlying function

m(x) has a sparse representation using the basis functions from the dictionary D and D
has a property of mutual incoherence (below), there exists efficient algorithms to recover the

underlying function m(x) uniquely (Donoho et al., 2006). Formally, for the sparse composite

models, we are trying to find some coefficient vector β, such that

β̂ = arg min
β
‖β‖0 subject to

n∑
i=1


Yi −

∑

φj∈D
βjφj(xi)




2

≤ δ (3.3)

where ‖β‖0 is defined to be the number of non-zero elements in β. More details will be

introduced in the next subsection.
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B. Sparsity, basis pursuit, and matching pursuit

To measure the sparsity of a solution vector β, l0 norm is adopted, which is simply the

number of non-zero elements in β. Assuming the presence of noise, the sparse version of the

composite model is defined as

(P0,δ) : β̂0,δ = arg min
β
‖β‖0 subject to

n∑
i=1

(
Yi −

p∑
j=1

βjφj(xi)

)2

≤ δ (3.4)

This is a typical combinatorial optimization problem, requiring the enumeration of all pos-

sible k-element collections of the basis functions φj in the dictionary D, for k = 1, ..., p,

looking for the smallest group which could satisfy the above condition. The time complexity

for such an algorithm is in general O(2p), even if there really exists a sparse k-element rep-

resentation, the complexity is at least O(pk). Which is obvious unaffordable by the current

digital computers.

Due to the fact that l0-norm is not a convex function, a natural idea is to relax l0-norm to

l1-norm, which is convex. By solving the relaxed convex programming problem, we hope

the result is very close or exactly the same as the original l0 problem. This technique

is called basis pursuit (BP). It is a convex optimization technique for recovering a sparse

signal, based on l1-norm minimization. The method is due to Chen et al. (1998) and was

independently developed by Tibshirani with the name “Lasso” (Tibshirani, 1996). In fact,

the basic technique of using an l1 relaxation to obtain a sparse solution can be traced back

to Claerbout and Muir (1973). More detailed historical overview can be found in Tropp

(2006). Using this convexification idea, by replacing l0-norm with l1-norm, the basis pursuit

problem can be defined as

(P1,δ) : β̂0,δ = arg min
β
‖β‖1 subject to

n∑
i=1

(
Yi −

p∑
j=1

βjφj(xi)

)2

≤ δ (3.5)

(P1,δ) can be cast as a convex quadratic programming problem and can be solved by many

standard optimization procedures, like, the interior-point algorithms (Chen et al., 1998) and

the active-set methods, etc.. In statistics, we generally write this problem in the Lasso form,

which corresponds the convex optimization in the Lagrangian form

(P1′,λ) : β̂λ = arg min
β

1

n

n∑
i=1

(
Yi −

p∑
j=1

βjφj(xi)

)2

+ λ‖β‖1 (3.6)

for suitable selected λ = λ(Y, δ), the solutions of (P1′,λ) and (P1,δ) are exactly the same.

Generally, the Lasso problem (P1′,λ) can be solved by an algorithm named LARS, the tuning

parameter λ is chosen by the Cp score, for more details, see Efron et al. (2004).

Besides basis pursuit, another relaxation idea is called matching pursuit (MP) (Mallat and

Zhang, 1994). Here, we introduce a variant of the MP algorithm, named orthogonal matching
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pursuit (OMP) due to Tropp and Gilbert (2006). It’s a greedy approximation to the problem

(P1,δ). The procedure starts from an initial residual r(0) = Y and a current decomposition

Ŷ (0) = 0; then for k = 1, ..., it augments the decomposition from Ŷ (k−1) to Ŷ (k) and updates

the residual r̂(k−1) to r̂(k) in a stepwise manner, always maintaining Y = Ŷ (k) + r̂(k). More

detailly, assuming all the basis functions from the dictionaryD are normalized, i.e. ‖φj‖2 = 1.

At the k-th stage, the matching pursuit algorithm selects an atom to be added to the

decomposition based on correlation with the current residual

ik = arg max
1≤i≤p

|〈r(k−1), φi〉| (3.7)

The estimated value at the step k is represented as

Ŷ
(k)
j =

k∑

l=1

β̂
(k)
il

φil(xj), j = 1, ..., n (3.8)

where the coefficients β̂
(k)
il

are fitted by the ordinary least squared regression to minimize

the residual r(k). The estimated residual will be the input for the next step. The algorithm

proceeds until l2-norm of the residual is less than δ. In the next subsection, we will see that

even basis pursuit and matching pursuit are greedy approximation algorithms, underly fairly

reasonable assumptions, they can exactly solve the problem (P0,δ).

C. Stable recovery of the basis pursuit and matching pursuit in the presence of noise

As shown in the previous subsection, both BP and MP are much more practical approximate

algorithms used to solve problem (P0,δ). However, under some conditions, theory has been

developed that BP and MP can correctly solve the problem (P0,δ) up to a constant proportion

to the noise level. The concept of mutual coherence of the dictionary D plays a key role in

all the theorems. It’s defined as

Definition 3.1. assuming the columns of dictionary D are normalized to unit l2-norm,

define the Gram matrix G = DTD. With G(k, j) denoting entries of this matrix, the mutual

coherence is defined as

M = M(D) = max
1≤k,j≤p,k 6=j

|G(k, j)| (3.9)

A dictionary is incoherent if M is small. Assume that the true function m(x) =
∑p

i=1 β
(0)
i φi(x)

and we observed the noisy observations Yi = m(xi) + εi, where
∑n

i=1 ε2
i ≤ δ. If (P0,δ) is ap-

plied, the following theoretical guarantees can be gotten (Donoho et al., 2006)

Theorem 3.2. Let the dictionary D have mutual coherence M = M(D). Suppose the

noiseless signal m(x) =
∑p

i=1 β
(0)
i φi(x), where β(0) satisifes

‖β(0)‖0 = N <
1/M + 1

2
(3.10)
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Then, β0 is the unique sparest such representation of m(x); and the reconstruction β̂(0,δ)

from applying (P0,δ) to the noisy data Y approximates β(0):

∥∥∥β̂(0,δ) − β(0)
∥∥∥

2

2
≤ 4δ2

1−M(2N − 1)
(3.11)

The above theorem shows that provided that the underlying object has a sparse representa-

tion in the dictionary D and if D has a low mutual coherence, recovery by explicitly imposing

the sparsity yields an approximation to the ideal sparse decomposition of the noiseless signal

in which the error is at worst proportional to the input noise level. A parallel development

of this result for the basis pursuit algorithm is shown in the following theorem.

Theorem 3.3. Let the overcomplete dictionary D have mutual coherence M = M(D).

Suppose the noiseless signal m(x) =
∑p

i=1 β
(0)
i φi(x), where β(0) satisifes

‖β(0)‖0 = N <
1/M + 1

4
(3.12)

Then, β0 is the unique sparest such representation of m(x); moreover, the solution β̂(0,δ)

from applying (P1,δ) to the noisy data Y approximates β(0):

∥∥∥β̂(1,δ) − β(0)
∥∥∥

2

2
≤ 4δ2

1−M(4N − 1)
(3.13)

The proof of theorem 3.3 relies on a series of relaxations, each one expanding the feasible

set and increasing the maximal value. Therefore, the resulted bound might not be tight,

however, the above bound is already quite reasonable and is enough to demonstrate the

power of BP. The (P0,δ) and (P1,δ) are two global optimization algorithms, while the OMP is

a greedy stepwise approximation algorithm. Paralleling this distinction, only a local stability

result can be developed for OMP.

Assuming that the order of basis functions φ1, φ2..., φp in the overcomplete dictionary D has

been chosen so that m(x) =
∑p

i=1 β
(0)
i φi(x), the entries in β(0) are arranged in a decreasing

order and the first N entries are non-zero.

Theorem 3.4. Suppose the ideal noiseless signal m(x) has a representation m(x) =∑p
i=1 β

(0)
i φi(x) satisfying

N = ‖β(0)‖0 ≤ 1 + M

2M
− 1

M
· δ

β
(0)
N

(3.14)

Then β(0) is the unique sparest representation of m(x). Denote by β̂(O,δ) the result of greedy

stepwise least-squares fitting which stops as soon as the representation error ≤ δ. Then,

β̂(O,δ) has the correct sparsity pattern:

supp(β̂(O,δ)) = supp(β(0)) (3.15)
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Also, β̂(O,δ) approximates the ideal noiseless representation:

∥∥∥β̂(O,δ) − β(0)
∥∥∥

2

2
≤ δ2

1−M(N − 1)
(3.16)

The result shown in theorem 3.4 is only a local stability property, since it’s only valid for

sufficient small δ < δ∗(β(0)). This theorem also proved the “support” property of the OMP

algorithm, i.e. the support of the estimated coefficients by the OMP algorithm is the same

as the support estimated by the support of the true spare coefficient vector β(0). A similar

support property is also derived for the BP approach, as is shown in the next theorem.

Theorem 3.5. Suppose that Yi = m(xi) + εi where m(x) =
∑p

i=1 β
(0)
i φi(x), ‖β(0)‖0 ≤ N

and
∑n

i=1 ε2
i ≤ δ. Let M = M(D) and suppose α ≡ MN < 1/2. Set

γ =

√
1− α

1− 2α
(3.17)

solve (P1,δ′) with exaggerated noise level δ′ = C · δ, where C = C(M,N) = γ
√

N . Then

supp(β̂(1,δ′)) ⊂ supp(β(0)).

The support property provided by theorem 3.5 is fairly conservative, it says that if we solve

the l1 minimization BP problem with an exaggeration of the noise level, the solution β̂(1,δ)

has its support contained in the support of the true coefficient vector β(0).

All the results in this section will be used as guidelines and theoretical guarantees in the

next section to design different inference algorithms for the sparse composite models.

IV. Methodology

With the basic idea of sparse composite models, we develop five inference methods to esti-

mate the galaxy spectral functions. They are,(i) data-adaptive basis pursuit/matching pur-

suit (DABP/DAMP), (ii) overcomplete dictionary basis pursuit/matching pursuit (ODBP /

ODMP), and (iii) simultaneous orthogonal matching pursuit (SOMP), using more and more

restricted assumptions. The difference between these five methods mainly lies in how to

design a suitable overcomplete dictionary, and how to conduct the basis pursuit or matching

pursuit to select the most suitable basis functions. To use the ODBP method, the refer-

ence spiky line locations is known as prior knowledge, but the ODMP, DABP and DAMP

methods do not have this constraint. All of them are computationally efficient and has good

scalability when facing large datasets. Under this framework, simultaneous confidence bands

for the linear models can be directly adopted. In the following part of this section, we will
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introduce these three frameworks in more detail. Finally, in this section, we also introduce

the idea of robust basis pursuit, which is expected to achieve a better performance when

facing outliers or heavy tailed distributions.

A. Overcomplete dictionary basis pursuit/matching pursuit

The idea of overcomplete dictionary basis pursuit/matching pursuit (ODBP/ODMP) is to

use different fixed, data-independent bases to represent the smooth continuum and the spiky

lines separately. In our case, since the continuum function f(x) is very smooth, Fourier basis

is used to construct Ψf . Given a wavelength vector X with length n, the discrete Fourier

basis (Fast Fourier Transform ) employs a set of orthonormal periodic functions, they are in

fact a combination of sine and cosine functions. Assuming there are altogether 2m + 1 basis

functions in the basis Ψf = [φ0, φ1, ..., φ2m], they are

φ0(xi) =
1√
n

, i = 1, ..., n

φk(xi) =
cos(kxi)

Ck

, φk+1(xi) =
sin((k + 1)xi)

Ck+1

, where k = 1, 3, ..., 2m− 1 (4.1)

where Ck, k = 1, ..., 2m are normalization constants to make sure l2-norm of φk(x) equals

1. To the purpose of representing the spiky spikes, a very natural choice is to use the Dirac

delta function, often referred to as the unit impulse function to represent the spiky lines.

There are two possible approaches to construct the base Ψg, one approach is to construct a

basis with exact n basis functions, i.e. Ψg = [ψ1, ..., ψn], each ψi is defined as

ψi(x) = δ(x− xi), where i = 1, .., n (4.2)

Using this approach, the overcomplete dictionary D = [Ψf , Ψg] will contain n+2m+1 basis

functions. Generally, for the galaxy spectral function estimation problem, n ≈ 4000, we

can not afford basis pursuit approach due to this very large scale quadratic programming

problem. However, matching pursuit can still be applied in this case and is still efficient.

This approach is called overcomplete dictionary matching pursuit (ODMP).

If we have the reference spiky line positions as a prior knowledge, the size of the base Ψg

can be significantly trimmed. Due to the fact that some peaks are wide and some peaks

are very sharp, the area covered by a peak has very interesting physics meaning. Therefore,

given a reference spiky line position xi, when constructing the basis functions for the Ψg, all

the points within a neighborhood of size 16 are also considered as possible spike positions.

More formally, assuming a reference spiky line location is xr. Then 16 basis functions are

constructed as

ψk(x) = δ(x− xk), subject to xk ∈ V16(xr) (4.3)

where V16(x) represents the 16-neighborhood of a point x. If a point is in the neighborhood

of two different reference points, we only count it once. Assuming there are altogether l
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reference spiky line positions, using this approach, we see that the size of the base Ψg can

at most be 16l. Since l ¿ n, we can afford the computational burden of the basis pursuit

now. This approach is called overcomplete dictionary basis pursuit (ODBP).

Since both Fourier base and the Dirac’s delta function base are orthonormal bases. The

correlation between a cos function and the δ function is very small, which implies a very low

mutural coherence of the overcomplete dictionary D. According to the previous theorems 3.3

and 3.4. Both basis pursuit and matching pursuit should work in this case. The size of the

base Ψf is a tuning parameter, generally, we choose m as large as possible subject to a small

mutual coherence value. In the next section, we will show that the choice of m is not quite

sensitive to the algorithm.

One thing to note is that, for the DABP method, instead of using the standard basis pursuit

or Lasso, we use a trick named relaxed Lasso, which is developed by Meinshausen (2005).

Relaxed Lasso is a generalization of the Lasso shrinkage technique for linear regression.

The results include all standard Lasso solutions but allow often for sparser models while

having similar or even slightly better predictive performance if many predictor variables are

present. Using the Lasso solution in equation 3.6, the relaxed Lasso solution is defined as

the following:

Definition 4.1. Assuming the set of predictor variables selected by the Lasso estimator

β̂λ as Mλ

Mλ = {1 ≤ k ≤ p|β̂λ
k 6= 0} (4.4)

For some parameter γ ∈ [0, 1], the relaxed Lasso estimator is defined as

β̂λ,γ = arg min
β

1

n

n∑
i=1

(
Yi −

∑

k∈Mλ

βkφk(xi)

)2

+ γλ‖β‖1 (4.5)

where γλ together as new tuning parameter is chosen by the Cp score.

Under some regularity assumptions, this relaxed Lasso estimator is expected to have a better

convergence rate than the ordinary Lasso estimator, see Meinshausen (2005). Since relaxed

Lasso can get a sparser solution than the ordinary Lasso and still have the same theoretical

guarantees, in the sequel of this paper, whenever we mention the basis pursuit or Lasso

algorithm, we are in fact refer to this relaxed version.

B. Data-adaptive basis pursuit/maching pursuit

Data-adaptive basis pursuit or matching pursuit algorithms (DABP/DAMP) are motivated

from a nonparametric inference technique named Rodeo (Lafferty and Wasserman, 2005).

Unlike the commonly used data-independent basis (e.g. Fourier basis, Haar basis or radial
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basis), data-adaptive basis pursuit/matching pursuit does not need an explicit parametric

form of each basis function. This purely data-driven basis function has essentially the same

distribution features as the data, and is expected to be more efficient in coding the unknown

function m(x).

The basic idea of the data-adaptive basis pursuit is as the following: fix a wavelength x

and let m̂h(x) denote a nonparametric estimator of m(x) with a smoothing parameter h

(e.g. If we we use the univariate local linear smoother, h is the bandwidth parameter). Let

M(h) = E(m̂h(x)) denote the mean of m̂h(x). Assume that x = xi is a given wavelength

value and that m̂0(x) = Yi is an observed function value. In this case, m(x) = M(0) = E(Yi).

If H = {h(t) : 0 ≤ t ≤ 1} is a smooth path through the set of smoothing parameters with

h(0) = 0 and h(1) = 1, then

m(x) = M(0) = M(1) + M(0)−M(1) (4.6)

= M(1)−
∫ 1

0

dM(h(s))

ds
ds = M(1)−

∫ 1

0

dM(h)

dh
· dh(s)

ds
ds (4.7)

The last equation follows from the chain rule, a naive estimator

m̂(x) = m̂1(x)−
∫ 1

0

dm̂h(x)

dh
· dh(s)

ds
ds (4.8)

is identically equal to m̂0(x) = Yi, which has poor risk since the variance of dbmh(x)
dh

is large

for small h. We need to replace it by an estimate D̂(x, h) which can be a shrinkage or

thresholding estimator of the derivative to reduce the variance. Our estimate of m(x) is

then

m̂(x) = m̂1(x)−
∫ 1

0

D̂(x, h(s)) · dh(s)

ds
ds (4.9)

Assuming 0 = s0 < s1 < · · · < sJ = 1, the discrete approximation to this is

m̃(x) = m̂1(x)−
J−1∑
j=0

D̂(x, h(sj)) · (h(sj+1)− h(sj)) (4.10)

To implement this idea, for j = 0, ..., J − 1, let

φj(xi) =

(
dm̂h(sj)(xi)

dh(sj)

)
· (h(sj+1)− h(sj)) (4.11)

To reduce the variance of this estimates, we apply soft-thresholding on the obtained basis

basis function φj(x). Soft-thresholding shrinks the obtained basis functions towards 0, hoping

to prove the estimation performance, more details can be found in Donoho and Johnstone

(1994), the rule is

φ′j(x) = sign(φj(x))(|φj(x)−Kj|)+ (4.12)
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where Kj = σ̂j

√
log n/n, and σ̂ represents the median absolute deviation (MAD) of the

difference vector of (φj(x1), ..., φj(xn)). To calculate it, we first define a length n− 1 vector,

ψ = (ψ1, ..., ψn−1), where

ψ
(j)
i = φj(xi+1)− φj(xi), i = 1, ..., n− 1 (4.13)

then σ̂j is defined as

σ̂j =
mediani|ψ(j)

i −mediankψ
(j)
k |

0.6745
(4.14)

This corresponds to a universal soft-thresholding rule, it’s not data-adaptive. There is also

a more sophisticated data-adaptive soft-thresholding method based on the empirical Bayes

approach, see Johnstone and Silverman (2004).

For the implementation purpose, we first fit a sequence of local polynomial regression func-

tions indexed by a sequence of decreasing bandwidths, each basis function is calculated as

the difference between two adjacent estimated regression lines in a greedy manner. The re-

sulting basis are further selected by basis pursuit (DABP) or matching pursuit (DAMP), and

the final estimation is obtained by fitting a linear model with ordinary least squares. More

specifically, to construct the data-adaptive basis function φj(xi), we first build a sequence of

decreasing bandwidths

H = {hj : hj = h0β
j for , 0 < β < 1, j = 0, ..., J − 1} (4.15)

where h0 = c is a large enough constant. The data-adaptive basis are defined as the following:

φ0(xi) = m̂h0(xi) (4.16)

φj(xi) = m̂hj
(xi)− m̂hj−1

(xi), for j ≥ 1 (4.17)

where m̂h(x) is the local polynomial estimator at point x with bandwidth h. Then, for each

obtained φj, j = 0, ..., J − 1, apply the thresholding strategy as in formula 4.12 to get φ′j.

With the obtained dictionary D = {φ′j(·)}J−1
j=0 , for DABP, we solve a relaxed Lasso problem

β̂λ = arg min
β

1

n

n∑
i=1

(
Yi −

p∑
j=1

βjφ
′
j(xi)

)2

+ λ‖β‖1 (4.18)

Here, λ ∈ [0,∞) is a tuning parameter chosen by the minimal Cp score. By defining Mλ =

{1 ≤ k ≤ p|β̂λ
k 6= 0}, the relaxed Lasso estimator is

β̂λ,γ = arg min
β

1

n

n∑
i=1

(
Yi −

∑

k∈Mλ

βkφ
′
k(xi)

)2

+ γλ‖β‖1 (4.19)

where the tuning parameter γλ is chosen by the minimal Cp score. For the DAMP, we just

apply the OMP algorithm as is shown in the previous section.
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The dictionary D generated by this approach is obvious not orthogonal. But all the theo-

retical guarantees in the previous still hold in this case. A very high level rationale about

why this data adaptive approach works is that, at the very beginning of the algorithm, very

large bandwidth parameter is used, under the assumption that there are only relatively few

spiky lines in the spectrum, the fitting of the local linear smoother is not affected by the

spiky lines (i.e. the fitting is mainly based on the smooth continuum). The basis functions

generated by the difference between the local linear estimator fits implicitly construct the

base Ψf . With the proceed of the algorithm, the bandwidth becomes smaller and smaller,

the local linear fit will be more and more dominated by the spiky lines. In this case, the bassi

functions generated in this stage implicitly construct the base Ψg. When constructing the

overcomplete dictionary D = [Ψf , Ψg], there is not a borderline clearly distinguish Ψf and

Ψg. For this, an empirical hypothesis testing technique will be designed and be tested in the

experiments section. When constructing the overcomplete dictionary, an important tuning

parameter is β in formula 4.15. A very simple way is to try a sequence of β values and choose

the one that minimize the mutual coherence parameter of the overcomplete dictionary D.

More detailed will be discussed in the experiment section.

C. Simultaneous orthogonal matching pursuit

Simultaneous orthogonal matching pursuit (SOMP) is a generalization of the orthogonal

matching pursuit algorithm (OMP). It’s developed by Tropp et al. (2006a,b). SOMP can find

a good approximation of several galaxy spectra at once using different linear combinations

of the same elementary basis functions. At the same time, it tries to balance the error

in approximation against the total number of elementary basis functions that participate.

These representative basis functions form a parse representative group for all the input galaxy

spectra, they are chosen from a large, overcomplete dictionary D. Before the description of

the SOMP algorithm, we first introduce some notations. Assuming that we have altogether

K galaxy spectra measured on the same wavelength grid X, the i-th spectrum is represented

as Y (i) ∈ Rn, the n×K spectra matrix S is defined as

S = [Y (1), ..., Y (k)] (4.20)

Assuming we have an overcomplete dictionary D, which is a n by p matrix constructed

using the data-independent basis functions or data-adaptive basis functions. The coefficient

matrix, denoted as B, is an element of the linear space Rp×K . The (j, k) entry of the

coefficient matrix is written as β
(k)
j or in functional notation as Bjk. From which ,we see

that, given a coefficient matrix B, the matrix product S = DB yields a signal matrix. Also,

it’s obvious that

Y (k) = Dβ(k) =

p∑
j=1

β
(k)
j φj (4.21)

Using these notations, a formal description of the algorithm is shown in figure 2
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Simultaneous orthogonal matching pursuit: algorithm

1. INPUT: An n×K spectra matrix S and a stopping criterion

2. OUTPUT:

(a) A set ΛT containing T indices, where T is the number of iterations completed

(b) An n×K approximation matrix AT and an n×K residual matrix RT

3. INITIALIZE: R0 = S, Λ0 = Ø and the iteration counter t = 1

4. LOOP over t, until the stopping criterion is met

(a) Find an index λt that solves the easy optimization problem

λt = arg max
j∈{1,...,p}

K∑

k=1

|〈Rt−1ek, φj〉| (4.22)

We use ek to denote the k-th canonical basis vector in RK

(b) Set Λt = Λt−1 ∪ {λt}
(c) Determine the orthogonal projector Pt onto the span of the basis functions in-

dexed in Λt

(d) Calculate the new approximation and residual:

At = PtS Rt = S−At (4.23)

Figure 2: The SOMP algorithm.

There are different possibilities for the stopping criterion of the SOMP algorithm. We can

simply stop the algorithm after a fixed number T of iterations, or wait until the Frobenius

norm of the residual declines to a threshold δ, i.e. ‖Rt‖F ≤ δ. Even though SOMP is a

greedy algorithm, good theoretical properties can be developed, see Tropp et al. (2006a).

The development of these theories depends on a newly defined function, named cumulative

coherence function µ(t), which is a generalization of the previously defined mutual coherence

M(D). It’s defined as the following:

Definition 4.2. For each natural number t, the mutual coherence function µ(t) is defined
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as

µ(t) ≡ max
Λ⊂{1,...,p}

max
j /∈Λ

∑

k∈Λ

|〈φj, φk〉| (4.24)

where the index set Λ ⊂ {1, ..., p}.

Some definitions of the vector and matrix norms will be used in the following theorems.

First, the row support of a coefficient matrix is defined as the set of indices for its nonzero

rows. More precisely,

rowsupp(C) ≡ {j ∈ {1, ..., p} : β
(k)
j 6= 0 for some k} (4.25)

That is, the support of a coefficient vector is the set of indices at which it is nonzero. Further,

the row-l0 quasi-norm of a coefficient matrix is defined as the number of nonzero rows

‖C‖row−0 ≡ |rowsupp(C)| (4.26)

Another useful, but more complicated definition is the concept of operator norm. If A is a

matrix with appropriate dimensions, we may view it as linear operator acting on X via left

matrix multiplication to produce elements of Y . We call A maps X to Y . Formally, the

adjoint A∗ is treated as a map between the dual space Y ∗ and X∗. In the current setting,

A∗ is simply the conjugate transpose of A, and it also acts by left matrix multiplication.

Definition 4.3. If A maps X to Y , its operator norm is defined as

‖A‖X,Y ≡ sup
x 6=0

‖Ax‖Y

‖x‖X

(4.27)

To derive the theoretical guarantees for the SOMP algorithm, an ideal simultaneous sparse

matching pursuit problem is defined

(SPARSE) : Copt = arg min
C∈Rp×K

‖S−DC‖F subject to ‖C‖row−0 ≤ T (4.28)

Then, according to Tropp et al. (2006a)

Theorem 4.4. (SOMP with a sparsity bound) . Assume that µ(T ) ≤ 1
2
. Given an input

matrix S, suppose that Copt solves (SPARSE) and that Aopt = DCopt. After T iterations,

SOMP will produce an approximation AT that satisfies the error bound

‖S−AT‖F ≤
[
1 + KT

1− µ(T )

(1− 2µ(T ))2

]1/2

· ‖S−Aopt‖F (4.29)

In words, SOMP is an approximation algorithm for (SPARSE)
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This theorem shows that the error in the computed approximation is never more than a

constant factor greater than the optimal approximation error. One drawback of this theorem

is that it seems too pessimistic. The factor of T appears in the constant seems an artifact of

the proof method. The real performance of SOMP is expected to be much better than this

bound. Also, a theorem about the support property of the SOMP algorithm is derived

Theorem 4.5. (SOMP with an error bound) . Let Λopt be an index set containing T basis

functions or fewer, where µ(T ) ≤ 1
2
. Given an input matrix S, suppose that Copt solves

(SPARSE) and that Aopt = DCopt. While it satisfies an error bound

‖S−Aopt‖F ≤ δ (4.30)

Let SOMP stop at the end of iteration t, if the norm of the residual satisfies

‖S−At‖F ≤
[
1 + KT

1− µ(T )

(1− 2µ(T ))2

]1/2

· δ (4.31)

It follows that each atom chosen is optimal, i.e. Λt ⊂ Λopt.

This theorem states that SOMP can calculate an approximation that achieves an error within

a constant factor of δ. Meanwhile, it guarantees that every basis function selected in the

computed approximation is drawn from the ideal set of basis functions.

When using SOMP, it’s often possible to develop estimates on the correlation between the

dicionary D and the residual left over in approximation. The bounds on this correlation are

also available as a theoretical result of SOMP. For this, first define a quantity

L(t) = L(t; T ) ≡ µ(T − t)

1− µ(t)
for t = 0, ..., T (4.32)

Then, the following theorem holds

Theorem 4.6. (SOMP with a correlation bound). Suppose that Λopt lists at most T

basis functions, where µ(t) < 1
2

and L(T ) < 1
2
. Let S be a spectra matrix, Aopt its best

approximation over Λopt, and Copt be the coefficient matrix that synthesizes Aopt. Finally,

assume we have a bound

‖D∗(S−Aopt)‖∞,∞ ≤ τ (4.33)

After iteration t of SOMP, halt the algortihm if

‖D∗Rt‖∞,∞ ≤ 1− L(t)

1− 2L(t)
· τ (4.34)

If the algorithm terminates ate the end of iteration t, we may conscious that
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1. the algorithm has chosen t indices from Λopt, and

2. it has identified every index λ from Λopt for which

K∑

k=1

|Copt(λ, k)| > τ

1− 2L(t)
(4.35)

3. The absolute error in the computed approximation satisfies

‖S−At‖2
F ≤ ‖S−Aopt‖2

F + τ 2

[
1− L(t)

1− 2L(t)

]2
T − t

1− µ(T − t)
(4.36)

4. In particular, if

min
λ∈Λopt

K∑

k=1

|Copt(λ, k)| > τ

1− 2L(t)
(4.37)

then t = T , Λt = Λopt, and At = Aopt

In summary, theorem 4.6 says that SOMP can be used to recover all the basis functions whose

coefficients are sufficiently large provided that the maximum total correlation between the

residual and the remaining basis functions is small.

Besides the SOMP, basis pursuit can also be generalized to obtain a simultaneous approxi-

mation version. However, the computational burden is not tractable when facing large scale

datasets as in our case. We omit it here, for more details, see Tropp et al. (2006b).

D. Robust basis pursuit using the LAD-Lasso

The previous results assume that the obtained galaxy spectra does not have a heavy tail

distribution. However, due to the experiment measurement error, it’s very likely that there

are outliers in the spectrum. To tackle this problem, more robust methods are needed. For

this, we adopt a robust basis pursuit method, named least absolute deviation Lasso (Wang

et al., 2004). The basic idea for LAD-Lasso is trying to combine the power of Least absolute

deviation regression and the Lasso regression. Instead of using least square as a criterion,

LAD-Lasso uses l1-norm for both the objective function and the penalization constraint.

The LAD-Lasso estimator is obtained as

β̂L = arg min
β

1

n

n∑
i=1

∣∣∣∣∣Yi −
p∑

j=1

βjφj(xi)

∣∣∣∣∣ + λ‖β‖1 (4.38)

Computationally, the LAD-lasso estimator is quite easy to get. For this, an augmented

model approach can be used, i.e. consider an augmented dataset.Y ∗
i ∈ Rn+p and D∗ =
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[D, φp+1, ..., φp+n]. where φp+j = nλej ( ej is the j-th canonical basis function in Rn ). Then,

it’s very easy to see that

β̂L = arg min
β

1

n + p

n∑
i=1

∣∣∣∣∣Y
∗
i −

n+p∑
j=1

βjφ ∗j (xi)

∣∣∣∣∣ for φ∗j ∈ D∗ (4.39)

In fact, the LAD-Lasso can be further generalized into

β̂LAD = arg min
β

1

n

n∑
i=1

∣∣∣∣∣Yi −
p∑

j=1

βjφj(xi)

∣∣∣∣∣ +
1

p

p∑

k=1

λk|βk| (4.40)

To obtain β̂LAD, the same augmented model approach can be applied. To choose the tuning

parameter λj, j = 1, ..., p. A heuristic suggestion is

λ̂j =
log(n)

n
∣∣∣β̃j

∣∣∣
(4.41)

where β̃j is the ordinary least absolute deviation estimate for the j-th covariant.

The LAD-Lasso doesn’t have the well-developed theoretical bounds yet, but some asymp-

totic properties can be derived under some regularity conditions. Assuming the regres-

sion coefficient vector β can be decomposed into two components: β = (βT
a , βT

b )T , where

βa = (β1, ..., βp0) corresponds to the relevant dimensions, βb = (βp0+1, ..., βp) corresponds to

the irrelevant ones. Define

an = max{λj, 1 ≤ j ≤ p0} and bn = max{λj, p0 < j ≤ p} (4.42)

The following theorem holds

Theorem 4.7. Assuming that the independent noise has continuous and positive density

at the origin and the covariance matrix of the design matrix exists and is positive definite.

Further, if
√

nan → 0 and
√

nbn → ∞. The LAD-Lasso estimator β̂LAD = (β̂T
a , β̂T

b )T must

satisfy

P
(
β̂b = 0

)
−→ 1 (4.43)

and

√
n

(
β̂T

a − βT
a

)
−→ N

(
0,

Σ−1
0

4f 2(0)

)
(4.44)

where Σ9 is the covariance matrix of all the relevant dimensions and f is the density of the

noise.
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V. Simultaneous Confidence Band

In the previous sections, we talked about the concrete galaxy spectral function estimation

techniques under a unified regression framework. However, for the inference purpose, a more

useful thing is the simultaneous confidence bands to cover the true functions m(x). Typically,

these bands are of the form

Ix =
(
m̂(x) + c

√
Var(m̂(x)) , m̂(x) + c

√
Var(m̂(x))

)
(5.1)

Our sparse composite models are essentially nonparametric, which needs to balance between

the bias and the variance. Due to the difficult bias problem (Wasserman, 2006), equation (5.1)

are in fact confidence bands for m̄(x) = Em̂(x), which corresponds to a smoothed version of

m(x). Formally, we want to find such a band I such that

P(m̄(x) ∈ Ix for all x ∈ X) = α (5.2)

Using our sparse composite model approach, since after the basis pursuit, a set of elemen-

tary basis functions are selected from an overcomplete dictionary. Further, an ordinary least

square regression is applied to estimate the galaxy spectral functions. This corresponds to

doing regression in a degenerated linear model. Therefore, all the simultaneous confidence

bands developed for the linear models can be applied directly. To ease the following discus-

sions, we redefine a design matrix X = [θ1, θ2, ..., θp] as the collection of all the selected basis

functions for the degenerated linear model, each θi is a length-n vector. We want to find

simultaneous confidence bands to cover the smoothed true function m̄(x) = EŶ = Em̂(x)

with probability α. by the linear model theory, we know that

m̂ = X
(
XTX

)−1
XT Y = X

(
XTX

)−1
XT (Xβ + ε) (5.3)

Therefore,

m̄(xi) = Em̂(xi) = θT
i β (5.4)

Now, we have a set T = {θ1, ..., θp}, and we want to construct a set of confidence intervals

such that

P(all θT β covered, θ ∈ T ) = α (5.5)

We call this a “simultaneous set of confidence intervals for {θT β; θ ∈ T }”.

In the remaining part of this section, we will first introduce a nonparametric variance esti-

mation technique, which is especially suitable if the variance is highly heteroscedastic. Then,

using the above introduced degenerated linear model framework, four different simultaneous

confidence bands will be described.
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A. Variance estimation

To estimate simultaneous confidence bands, one important thing is to estimate the standard

deviation σ(xi) of at each wavelength value xi. From figure 1, we have known that the data

are highly heteroscedastic. The following approach will be used for variance estimation.

Suppose that

Yi = m(xi) + σ(xi)εi, εi ∼i.i.d N (0, 1), i = 1, ..., n (5.6)

Let Zi = log (Yi −m(xi))
2 and δi = log ε2

i . Then

Zi = log
(
σ2(xi)

)
+ δi (5.7)

Therefore, we can estimate log (σ2(xi)) by regressing the log squared residuals on X. For

Variance Estimation: algorithm

1. Estimate m(x) with ODBP/ODMP to get an estimate m̂(x)

2. Define Zi = log (Yi −m(xi))
2

3. Regress the Zi’s on the xi’s (using local linear smoother or smoothing splines) to get

an estimate q̂(x) of σ2(x) and let

σ̂2(x) = ebq(x) (5.8)

Figure 3: The variance function estimation algorithm.

the variance estimation algorithms, there are two places need nonparametric methods to

estimate a function. For the first time,since the spectral function is very spiky, ODBP or

ODMP are used for the estimation. However, for the residuals, more common methods, like

local linear estimator or smoothing splines are more suitable. For more details about this

estimation method, see Wasserman (2006).

B. Simultaneous confidence bands using Bonferroni correction

The Bonferroni approach can be applied when T is a finite set, |T | = k. Let Ii to represent

the event that {θT
j β ∈ Ixi

} and Ic
i to represent the event that {θT

j β /∈ Ixi
}. then

P(I1, ..., In) = 1− P(Ic
1, ..., I

c
n) (5.9)

≥ 1−
n∑

i=1

P(Ic
i ) (5.10)
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Therefore as long as

1− α ≥
n∑

i=1

P(Ic
j ) (5.11)

the intervals cover simultaneously. One way to achieve this is if each interval individually

has probability

α′ ≡ 1− 1− α

n
(5.12)

of covering its corresponding value. To do this, use the same approach as used to construct

single confidence intervals, but with a threshold α′.

C. Scheffé’s simultaneous confidence bands

The Scheffé approach can be applied if T is a linear subspace of Rp. Begin with the pivotal

quantity

θT β̂ − θT β√
σ̂2θT (XTX)−1θ

(5.13)

and postulate that a symmetric interval can be found so that

P


−Mα ≤ θT β̂ − θT β√

σ̂2θT (XTX)−1θ
≤ Mα for all θ ∈ T


 = α (5.14)

This would be equivalent to

P


sup

θ∈T

(
θT β̂ − θT β

)2

σ̂2θT (XTX)−1θ
≤ M2

α for all θ ∈ T


 = α (5.15)

Since for ε = (ε1, ..., εn)

β̂ − β =
(
XTX

)−1
XT ε (5.16)

we have
(
θT β̂ − θT β

)2

σ̂2θT (XTX)−1θ
=

θT
(
XTX

)−1
XT εεTX

(
XTX

)−1
θ

σ̂2θT (XTX)−1θ
=

MT
θ εεT Mθ

σ̂2MT
θ Mθ

(5.17)

where Mθ = X
(
XTX

)−1
θ. Note that

MT
θ εεT Mθ

σ̂2MT
θ Mθ

= 〈ε,Mθ/‖Mθ‖〉2/σ̂2 (5.18)
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i.e. it is the squared length of the projection of ε onto the line spanned by Mθ (divided by

σ̂2). To maximize 〈ε,Mθ/‖Mθ‖〉2, set θ = Pε, where P is the projection matrix onto the

linear space

{
X(XTX)−1θ | θ ∈ T }

= {Mθ} (5.19)

Therefore

sup
θ∈T

〈ε,Mθ/‖Mθ‖〉2/σ̂2 =
‖Pε‖2

σ̂2
(5.20)

and since {Mθ} is in the column space spanned by X, it follows that Pε and σ̂2 are indepen-

dent. Morever,

‖Pε‖2

σ̂2
∼ χ2

q (5.21)

where q = dim(T ), and as we know

n− p

σ2
σ̂2 ∼ χ2

n−p (5.22)

Thus

‖Pε‖2/q

σ̂2
∼ Fq,n−p (5.23)

Let QF be the α quartile of the Fq,n−p distribution. Then

P


 θT β̂ − θT β√

θT (XTX)−1θ
≤ σ̂

√
qQF for all θ


 = α (5.24)

so

P
(
θT β̂ − σ̂

√
qQF Vθ ≤ θT β ≤ θT β̂ + σ̂

√
qQF Vθ for all θ

)
= α (5.25)

defines a level α simultaneous confidence set for {θT β|θ ∈ T }, where Vθ = θT
(
XTX

)−1
θ.

D. Simultaneous confidence bands using the Volume-of-Tube formula

The simultaneous bands using the Volume-of-Tube formula are mainly developed by Sun

and Loader (1994). Consider the confidence bands in formula 5.1. Under the degenerated

linear model framework, we have

m̄(x) = Em̂(x) =
n∑

i=1

li(x)m(xi) (5.26)
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where L = {li(xj)}j=1,...,n
i=1,...,n is the hat matrix for the design X. In our case, it is

L = X
(
XTX

)−1
XT (5.27)

Also

Var (m̂(x)) =
n∑

i=1

σ2(xi)l
2
i (x) (5.28)

To decide the constant c, first, suppose σ(x) is known, we have that

P (m̄(x) /∈ Ix for some x ∈ [0, 1]) = P

(
max
x∈[0,1]

m̂(x)− m̄(x)√∑n
i=1 σ2(xi)l2i (x)

> c

)
(5.29)

= P

(
max
x∈[0,1]

∑n
j=1 εjlj(x)√∑n

i=1 σ2(xi)l2i (x)
> c

)
(5.30)

= P
(

max
x∈[0,1]

|W (x)| > c

)
(5.31)

where W (x) =
∑n

i=1 ZiTi(x), Zi = εi/σ(xi) ∼ N (0, 1) and Ti(x) = li(x)/
√

l2i (x). Now, W (x)

is a Gaussian process. To find c, we need to calculate the distribution of the maximum of

a Gaussian process, this can be done using the following formula, which is also known as

“Volume-of-Tube” formula

P

(
max
x∈[0,1]

∣∣∣∣∣
n∑

i=1

ZiTi(x)

∣∣∣∣∣ > c

)
≈ 2 (1− Φ(x)) +

κ0

π
e−c2/2 (5.32)

for large c, where

κ0 =

∫ b

a

‖T ′(x)‖dx where T ′(x) =

(
∂T1(x)

∂x
, ...,

∂Tn(x)

∂x

)
(5.33)

More details about this formula can be found in Wasserman (2006). If we choose c to solve

2 (1− Φ(x)) +
κ0

π
e−c2/2 = α (5.34)

then the desired simultaneous confidence bands are obtained. If σ(x) is unknown, the esti-

mated function σ̂(x) is used. Sun and Loader also suggest to replace the right-hand side of

equation 5.32 with

P (|Tm| > c) +
κ0

π

(
1 +

c2

m

)−m2/2

(5.35)

where Tm has a t-distribution with m = n − trace(L) degrees of freedom. For our galaxy

spectra analysis task, n is fairly large (≈ 4000), equation 5.32 is already a suitable approxi-

mation.
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E. Simultaneous confidence bands using bootstrapping

After we fit the galaxy spectral function , m̂(x), the residuals ε̂i = Yi − m̂(xi) can be

calculated. Resample the residuals to get bootstrap residuals ε̂∗1, ε̂
∗
2, ..., ε̂

∗
n. Now let Y ∗

i =

m̂(xi) + ε∗i , i = 1, ..., n. We re-estimate the spectral function, repeat this process B times,

and get the upper and lower α/2 quartiles at each point to calculate the simultaneous

confidence band. This approach is very computationally intensive, but is still affordable.

VI. Experimental Results

Different methods are tested on both synthetic and real-wold datasets, and has been proved

to be both effective and easy to implement. In this section, we first use some synthetic data

to illustrate the performance of different function and confidence bands estimators. Then,

the real-world data from SDSS is ued to test the performance of different methods.

A. Synthetic dataset
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Figure 4: Left: the synthetic spectrum using the Fourier basis and the narrow Gaussian

density functions, Right: the heteroscedastic variance function
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Figure 5: Upper: the estimated spectral function and the corresponding coefficients plot from

the ODBP for the dataset with a low noise level. Lower: the same results from the ODBP

for the dataset with a high noise level

31



0.0 0.2 0.4 0.6 0.8 1.0

−5
00

0
50

0
the estimated smooth continuum (ODBP)

wavelength

flu
x

estimated function
true function

(a) Estimated continuum by ODBP (low noise)
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Figure 6: Upper: the estimated smooth continuum and the spiky lines from the ODBP for

the dataset with a low noise level. Lower: simultaneous confidence bands from the ODBP

for the dataset with a low noise level
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Figure 7: Upper: the estimated smooth continuum and the spiky lines from the ODBP for

the dataset with a high noise level. Lower: simultaneous confidence bands from the ODBP

for the dataset with a high noise level
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(b) Estimated coefficients (low noise)
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Figure 8: Upper: the estimated spectral function and the corresponding coefficients plot from

the ODMP for the dataset with a low noise level. Lower: the same results from the ODMP

for the dataset with a high noise level
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Figure 9: Upper: the estimated smooth continuum and the spiky lines from the ODMP for

the dataset with a low noise level. Lower: simultaneous confidence bands from the ODMP

for the dataset with a low noise level
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(a) Estimated continuum by ODMP (high noise)
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(c) The Scheffé band (high noise)

0.0 0.2 0.4 0.6 0.8 1.0

−5
00

0
50

0

The Tube band:(ODMP)

wavelength

flu
x

mean function
lower bound
upper bound

(d) The Tube’s band (high noise)

Figure 10: Upper: the estimated smooth continuum and the spiky lines from the ODMP for

the dataset with a high noise level. Lower: simultaneous confidence bands from the ODMP

for the dataset with a high noise level
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(b) Estimated coefficients (low noise)
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Figure 11: Upper: the estimated spectral function and the corresponding coefficients plot from

the DABP for the dataset with a low noise level. Lower: the same results from the DABP

for the dataset with a high noise level
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(a) Estimated continuum by DABP (low noise)
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Figure 12: Upper: the estimated smooth continuum and the spiky lines from the DABP for

the dataset with a low noise level. Lower: simultaneous confidence bands from the DABP

for the dataset with a low noise level
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(a) Estimated continuum by DABP (high noise)
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Figure 13: Upper: the estimated smooth continuum and the spiky lines from the DABP for

the dataset with a high noise level. Lower: simultaneous confidence bands from the DABP

for the dataset with a high noise level
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(b) Estimated coefficients (low noise)
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(d) Estimated coefficients (high noise)

Figure 14: Upper: the estimated spectral function and the corresponding coefficients plot from

the DAMP for the dataset with a low noise level. Lower: the same results from the DAMP

for the dataset with a high noise level
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(b) Estimated spiky lines (low noise)
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(c) The Scheffé band (low noise)
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(d) The Tube’s band (low noise)

Figure 15: Upper: the estimated smooth continuum and the spiky lines from the DAMP for

the dataset with a low noise level. Lower: simultaneous confidence bands from the DAMP

for the dataset with a low noise level
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(a) Estimated continuum by DAMP (high noise)
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Figure 16: Upper: the estimated smooth continuum and the spiky lines from the DAMP for

the dataset with a high noise level. Lower: simultaneous confidence bands from the DAMP

for the dataset with a high noise level
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(b) Spectrum 2 (high noise)
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(c) Spectrum 3 (high noise)
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(d) Spectrum 4 (high noise)
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(e) Spectrum 5 (high noise)
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(f) Spectrum 6 (high noise)

Figure 17: Fitted results for 12 galaxy spectra (Here shows the results for spectra 1 - 6 )using

the SOMP algorithms. Here, the 12 spectra have a high noise level
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(a) Spectrum 7 (high noise)
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(c) Spectrum 9 (high noise)
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(d) Spectrum 10 (high noise)
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(e) Spectrum 11 (high noise)
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(f) Spectrum 12 (high noise)

Figure 18: Fitted results for 12 galaxy spectra (Here shows the results for spectra 7 - 12

)using the SOMP algorithms. Here, the 12 spectra have a high noise level
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(a) LAD-Lasso fit (low noise)
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(b) Estimated coefficients (low noise)
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(c) LAD-Lasso fit (high noise)
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(d) Estimated coefficients (high noise)

Figure 19: Upper: the estimated spectral function and the corresponding coefficients plot

from the LAD-Lasso for the dataset with a low noise level. Lower: the same results from the

LAD-Lasso for the dataset with a high noise level
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(a) Estimated continuum by LAD-Lasso (low noise)
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(b) Estimated spiky lines (low noise)
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(c) The Scheffé band (low noise)
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(d) The Tube’s band (low noise)

Figure 20: Upper: the estimated smooth continuum and the spiky lines from the LAD-Lasso

for the dataset with a low noise level. Lower: simultaneous confidence bands from the LAD-

Lasso for the dataset with a low noise level
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(a) Estimated continuum by LAD-Lasso (high
noise)
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(b) Estimated spiky lines (high noise)
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(c) The Scheffé band (high noise)
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(d) The Tube’s band (high noise)

Figure 21: Upper: the estimated smooth continuum and the spiky lines from the LAD-Lasso

for the dataset with a high noise level. Lower: simultaneous confidence bands from the LAD-

Lasso for the dataset with a high noise level

47



B. Real SDSS Dataset and exploratory data analysis

From the above simulations on the synthetic datasets, the matching pursuit method’s perfor-

mance is better than the basis pursuit approach. Especially, ODMP obtains the best results

in both high noise and the low noise cases. In the following, we will apply ODMP to fit the

real galaxy spectra. The observed spectra is shown in figure 1. We apply ODMP method

using an overcomplete dictionary with Fourier basis functions and the Dirac delta functions.

Our iteration number T = 50. After the pursuit, we get the fitted smooth continuum and

the spiky lines as is shown in figure 22
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(a) Estimated continuum by LAD-Lasso (high noise)

Figure 22: The simultaneous confidence bands (Scheffé) and the fitted galaxy spectral function

using the ODMP method
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Figure 23: Upper: the estimated smooth continuum and the spiky lines using ODMP for the

real galaxy spectrum. Lower: the fitted galaxy spectral function and the estimated variance

function using ODMP
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Figure 24: The simultaneous confidence bands (Tube) and the fitted galaxy spectral function

using the ODMP method
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From figure 22 and figure 24, we see that the simultaneous confidence bands are very tight.

The Scheffé’s bands and the Tube’s bands are very consistent. More importantly, from

figure 23, we see that using ODMP, our estimated variance function is quite similar to the

given variance function. All these suggests a good fit. Also, the fitted continuum and the

spiky lines are shown in figure 23.

VII. Conclusions

In this paper, we propose a unified regression framework, named sparse composite model,

for galaxy spectral function estimation. Under this framework, five different inference meth-

ods: ODBP, ODMP, DABP, DAMP, SOMP are developed. Also, different simultaneous

confidence bands for degenerated linear models are applied. All these methods are based on

basis pursuit or matching pursuit techniques, which have very good theoretical guarantees.

More importantly, these methods are very easy to implement and runs efficiently. Using a

synthetic galaxy spectrum, all these methods and confidence bands are tested. Based on

the simulation, we noticed that two matching pursuit techniques ODMP and SOMP are

outperforming the reaming methods. We applied the ODMP on the real galaxy spectrum

and obtained a very good fit. Not only the confidence bands are very tight, the estimated

variance function is also quite similar to the prior knowledge. More importantly, a big ad-

vantage of our approach is that we do not need the prior knowledge or the reference spiky

line locations. Since SOMP also work well for the simulated dataset, the next step is to

implement the SOMP methods to run on the real datasets.
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