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ABSTRACT

A large body of research has been done in using patterns derived from mass spectra from time-
of-flight matrix-assisted laser desorption and ionization (MALDI-TOF), or Surface-enhanced
laser desorption (SELDI-TOF) mass spectrometer to differentiate patient samples from control
cases. Based on the raw spectra, high precision for discriminant analysis has been reached
without identification of the underlying proteins responsible. However, the reproducibility and
reliability of these procedures are still questionable. One of the main challenges is how to de-
convolute the mixture of biologically meaningful process and the artifactually involved noise
process. To achieve this goal, a careful analysis and preprocessing of the obtained spectrometry
data is needed, the models used for analysis should be justified. More importantly, the whole
procedure should be conducted under a unified framework in a reproducible manner. For the
sake of its simplicity and interpretability , regression analysis is adopted as our starting point.
In this paper, we introduced a newly developed mass spectrometry analysis package named
RAMS. In which, different parametric and nonparametric regression techniques are used for
data preprocessing. Some simple classification methods are also implemented as modules for
sample classifications. We use RAMS to analyze an Ovarian cancer dataset, with 10-fold cross
validation, Our analysis achieves a misclassification error rate about 0.35%. Which is comparable
with current result of the literature, but our approach is easier.

Keywords: Regression analysis, sample classification, variable selection, mass spectrometry,
cancer diagnosis.
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1 Introduction

A reliable and precise classification of patient samples is essential for successful cancer diag-
nosis and treatment. Mass Spectrometry (MS) is a promising technique which is being used
increasingly in cancer research. By analyzing the expression profile for thousands of proteins
simultaneously, such technique may lead to a more complete understanding of the underlying
biomarkers and hence to a finer and more informative diagnosis strategy. The ability to success-
fully discriminate cancer samples from normal counterparts is by far the most important aspect
of this novel approach to early cancer detection. More specifically, with a massively parallel
analysis of thousands of proteins in a reproducible manner, comparative proteomic profiling ex-
tracted from normal versus cancer tissues enables the possibility to discover important proteins
as biomarkers that play a crucial role in disease pathology.

Generally, a complete mass spectrometry analysis includes three stages: (i) data preprocess-
ing, (ii) feature selection, and (iii) sample classification. Data preprocessing is mainly used for
noise-reduction and smoothing, so that the products could be used for the downstream analysis;
Feature extraction is the most important step for biomarkers identification; While sample clas-
sification is mainly used for early cancer diagnosis. In this section, recent progresses in the last
three years are briefly summarized according to these three categories. Because of the impor-
tance of data preprocessing and feature extraction, we will describe them in more details than
the already well-established classification methods. Some problems and challenges of current
procedures are also addressed, which motivates the development of a more systematic analytical
framework.

1.1 Data Preprocessing

Sample preprocessing includes spectrum calibration, baseline correction, smoothing, peak iden-
tification, intensity normalization and peak alignment [1, 2, 3]. It is the most important step
for mass spectrometry analysis, all the following analysis crucially depend on the quality of this
step, several popular preprocessing techniques are summarized here according to different stages.

Spectra Calibration: Aligning individual spectra is the first step for data preprocessing. Due
to some instrument factors, even with the use of internal calibration, the maximum observed
intensity for an internal calibrant may not occur exactly at the same m/z site across different
spectra. This can be solved by visually align the maximum observed intensity of the internal
calibrant. Also, For the collected raw spectra, the distance between each pair of consecutive m/z
ratios is not constant. Instead, the increment in m/z values is approximately a linear function
of the x-axis values. Wu et al. [4] performed a logarithm transformation of the m/z values to
make the scale of the predictor roughly comparable across the range of all m/z values. At the
same time, to reduce the dynamic range of the peak intensities, a logarithm transformation on
the peaks is also conducted. Figure 1 shows some raw spectra before and after these logarithm-
transformations.

Background substraction: During the sample preparation procedure, chemical and electronic
noise might produce background fluctuations. This pattern is spectrum specific and tends to
dominant the distributions of the peak intensities in the whole spectrum. Therefore, it’s im-
portant to remove these background noise before further analysis. Wu et al [4] used a “loess”
smoother to fit a nonparametric local regression line to estimate the background intensity values,
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Figure 1: Left: Raw spectra before any transformation Right: the same spectra after the
logarithm transformation

and then subtracted the fitted values from the fitted regression mean function. Baggerly et al. [5]
proposed a semi-monotonic baseline correction method in their analysis of the SELDI-TOF data.
An example of baseline substraction is shown in figure 2 with a windowed piecewise cubic inter-
polation method. For the MALDI-TOF mass spectrometry data, after background correction, a
smoothing procedure is generally needed to smooth over the effect of isotopic envelop presented
in the data. Coombes et al. [6] adopted a wavelet based approach for smoothing and de-noising
the mass spectrometry data before peak identification. A recent work by Tibshrani et al. [7]
used “super-smoother” with a span of 0.002 to achieve this goal.

Peak identification: Some mass spectrometers could provide a list of labelled peaks, but this
information is not available in most systems. In these cases, a peak finding procedure is needed
to identify peaks in each individual spectrum. The most intuitive and heuristic idea is viewing
spectral peaks as local maxima in the mass spectrometry data. For example, Yasui et al. [8]
developed a neighbored local intensity method, they look for sites (m/z values) that have a
highest peak intensity among the ±s sites that around it. Also, this candidate peak should have
a value higher than the average background at that site across different spectra. Based on these
heuristics, several parameters need to be specified, eg. the number of neighborhood points, the
threshold for the background intensity values. The validity of these parameter settings depend
crucially on the correctness of the underlying noise models. A different approach is trying to
identify peaks by plugging into prior biological knowledge, eg. Yu et al. [9] deemed a spectral
peak to be biologically meaningful (eg. due to peptide ionization ) only if there are more than
one isotopic variant of it has presented.

Peak alignment: Due to the existence of chemical noise, co-crystallization, isotopic elements,
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Figure 2: Mass spectra after the logarithm transformation and background substraction

and other unknown factors, the same biological peak may be horizontally shifted in different
spectra. This challenge can be addressed by aligning peaks across different spectra. E.g, Yasui
et al. [8] believed that the m/z axis shift of peaks is about ±0.1% to ±0.2% of the m/z value,
they simply assume the peak has a width of ±0.4% of the m/z value. Then, the m/z values
with the largest number of peaks which have overlapped ranges is extracted. Thus, the set of
peaks that contribute to this m/z are aligned and removed from the spectra. This process is
conducted iteratively until all the peaks are exhaustive. Tibshirani et al. [7] proposed a more
intuitive algorithm, called Peak Probability Contrasts (PPC), which can align the peaks by
hierarchical clustering. For this, complete linkage hierarchical clustering is applied to the peak
positions along the log(m/z) axis, and the resulting dendrogram is cut at height log(0.005), all
the peaks in the same cluster are aligned together.

Peak normalization: Normalizing the peak intensities across different spectra into the same
scale could be quite helpful to the comparison of different groups of spectral peaks in different
mass spectra. The naive approach is to normalize each spectrum by a linear transformation that
maps the minimum and maximum peak values to 0 and 1 respectively. This approach obviously
oversimplified the problem. Considering the possible outliers and influential points, Tibshrani
et al. [7] used 10th and 90th quartiles instead of the minimum and maximum as the range for
mapping: all the peaks higher than the 90th quartile or lower then the 10th quartile are mapped
to 1 and 0 respectively.

Most of these data preprocessing methods are very heuristic and ad hoc. Many of them come
from the past experience and personal knowledge about the data. Some approaches work pretty
well on some specific datasets, but not effective on the others. How to develop a systematic,
theoretically soundable, framework for mass spectra preprocessing would be an interesting topic.
Another crutial point is, these methods generally do not distinguish the underlying noise process
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and the biological process explicitly. Due to the high sensitivity of the mass spectrometer to the
protocol for sample processing , the meaningful biological process is quite prone to be“tainted”by
the influential noise patterns. Due to the essential uncertainty nature of the mass spectrometry
analysis, it may be useful to treat it from a probabilistic perspective. By viewing each peak as a
random variable which subject to some unknown distributions, the data preprocessing problem
can be reduced to the a simpler form as how to transform the data to make it satisfy the model
assumptions, this is a well-studied topic in the area of regression analysis [10].

1.2 Feature Extraction

After preprocessing, all the peaks from different spectra are aligned and normalized well for
comparison. By viewing each m/z site as a feature, generally, we will get hundreds of thousands
of features (also called covariates exchangeably in the following discussion) versus a relatively
small sample size (about several hundreds). Feature extraction serves three-fold purposes in this
context: (i) Trying to discover interesting and interpretable biomarkers for a specific disease,
(ii) Reduce the data complexity to make it more tractable to statistical analysis. (iii) Reduce
the noise in the data, to make the analyzed results more reliable. The proposed feature ex-
traction approaches could be divided into two divisions according to whether it’s deterministic
or nondeterministic. Deterministic approach includes two sample t-test, Principle component
analysis, boosting etc. While the nondeterministic methods are mainly represented by genetic
algorithm and neural network methods.

Feature extraction Settings: Suppose that, we have n0 samples from the cancer group (eg.
cancer patient) and n1 from the control group (normal person). There are altogether m co-
varites (m/z values) in each spectrum. From a probabilistic perspective, assuming that Xk(G)
represents the k-th covariate in the group G, (G = 0, 1). 0 for the cancer group and 1 for the
control group, k = 1, ..., m. The observations of the random variable Xk(G) are

Xk(0) = (xk,1(0), xk,2(0), ..., xk,n0(0))T

for the cancer group, and

Xk(1) = (xk,1(1), xk,2(1), ..., xk,n1(1))T

for the normal group. The task is trying to find a subset of the covariates {X1, ..., Xs}, (s ¿ k)
which could informatively summarize the difference between these two groups. More importantly,
in the context of mass spectrometry analysis, we expect them to be biologically interpretable.

Two sample t-test: As in the analysis by Guoan et al. [11], two sample t-test is used to
quantify the difference between two groups in the analysis of mass spectrometry data. When we
are interested in identifying peak intensities that are differentially expressed in two populations of
mass spectrometry samples−− cancer versus normal. According to the formalization of the data
above, the parameter of interest is an m–vector of differences in mean expression measures in the
two populations, ψ(k) = E[Xk(G)| G = 0]− E[Xk(G)| G = 1], k = 1, . . . , m. To identify peaks
with higher mean intensity measures in the abnormal compared to the normal counterparts,
one can test the two-sided null hypotheses H0(k) = I(ψ(k) = 0) vs. the alternative hypotheses
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H1(k) = I(ψ(k) 6= 0), using two-sample Welch t-statistics

Tk ≡
X̄k,n0(0)− X̄k,n1(1)√

σ2
k,n0

(0)

n0
+

σ2
k,n1

(1)

n1

, (1)

where n0, n1, X̄k,n0(0), X̄k,n1(1), and σ2
k,n0

(0), σ2
k,n1

(1) denote, respectively, the sample size,
sample means, and sample variances, for samples with different status (cancer vs. normal). If the
null hypotheses are rejected, i.e., the corresponding peak intensities are declared differentially
expressed. Two sample t-test may be the most popular statistical method used for feature
selection due to its simplicity. However, one potential problem is that t-test is not a very robust
statistic, the lack of robustness may impair the feature selection result when a huge amount to
features are being screened. Also, the reliability of t-test depends on the underlying data has
an approximate normal distribution assumption. When there are only about tens of spectra in
each groups, it is not clear that screening on the value of the t-statistic is still effective or not.

Peak probability contrasts (PPC): Peak probability contrasts (PPC) was proposed by Tib-
shrani et al. [7]. Unlike two sample t-test that takes into account the absolute peak intensity
value, PPC cut the peak height at some quantile in such a way as to maximally discriminate
between the cancer and normal samples in the training dataset. This approach should be more
reliable than the two sample t-test for mass spectrometry analysis. Since it takes into account
the fact that the peak intensity values can vary greatly across the m/z range. For more details,
assume q(α, k) represents the α quantile of the peaks xk,j at site k, then, given two groups AG,
G = 0, 1 of size n0 and n1, let pk,α(G) be the proportion of spectra in group G with a peak at
site k larger than q(α, k):

pk,α(G) =
∑

j∈AG

I[xk,j > q(α, k)]/ni, i = 0, 1 (2)

Fianlly, the optimal α(k) is chosen to maximize |pk,α(G = 0) − pk,α(G = 1)| and set p̂k(G) =
p

k, ˆα(k)
(G). After these calculations, important features could be selected according to the de-

creasing order of |p̂k(G = 0) − p̂k(G = 1)|. PPC does not depend on any explicit normality
assumptions, it should be more robust than the two sample t-test and is also computationally
tractable.

Principle Component Analysis (PCA): Principle component analysis was first applied for
mass spectrometry analysis by Lilien et al. [12] in their algorithm package named Q5. PCA
is an unsupervised technique mainly used for determining orthogonal axes of maximal variance
from a dataset. When viewing each m/z site as a feature, the spectra are zero-meaned and an
eigendecomposition (EVD) of the covariance matrix is computed. The eigenvector associated
with the ith largest eigenvalue lies along the ith principal component. With the corresponding
eigenvectors column spanned matrix as a projection matrix, the raw spectra is projected into
a reduced-dimension space with little or no information loss. The reduced dimension could be
viewed as a linear combination of the original peak intensities. PCA is a deterministic algorithm,
when the number of sample is not quite large, it’s easy to conduct the EVD decomposition. The
biggest challenge for PCA method is how to interpret the reduced-dimensional features. Since
this weighted combination mechanism does not have a clear biological interpretation, it is not
quite natural to find biologically meaningful bombardiers.
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Genetic algorithm: Unlike the above deterministic methods, genetic algorithm is an iterative
approach. One of the representative work is done by Petricoin et al. [13]. In their work, each
run of the genetic algorithm starts with 1500 logical chromosomes (feature sets) of a size ranging
from 5 to 20 index values. The fitness of each feature set is measured by the Euclidean distance.
New populations are then produced by preferentially combining pieces of the “most fit”members
of the current generation. The process then evolves for 250 generations, with a mutation rate of
0.02% and random crossover locations. All the distinct features in the raw spectra are included
in the feature set. There are a whole family of genetic algorithms that can be used for feature
selection, these algorithms require multiple iterations to converge. The biggest problem for
these algorithms is their nondeterministicness, even run on the same dataset, the results may
be different due to different initial values. Also, interpretability is a drawback of such kinds of
algorithms.

1.3 Sample Classification

After data preprocessing and feature extraction, almost every discriminant methods in the ma-
chine learning community can be applied directly for mass spectrometry analysis. Markey et.
al [14] proposed to use classification and regression tree (CART) model for spectra classifica-
tion. The basis of their algorithm is the recursive partitioning of the data into more homogenous
subsets. The advantage of CART is it’s good interpretability, with the binary decision tree rep-
resentations learned from their algorithm, a series of if-then rules could be extracted. However,
when the number of features are significantly larger than the number of samples, a tree model
is prone to overfitting, it must be pruned to avoid this. Another approach is proposed by Lilien
et al. [12], in which Fisher Discriminant Analysis (FDA) is used for mass spectrometry classi-
fication, with a supervised learning manner. They try to project the sample points with the
extracted features onto a hyperplane which maximizes the between-class variation and within-
class variation. The disadvantage of this approach is that the number of features should be
less than the number of samples. In the context of mass spectra classification, this generally
means a very strict pre-screening procedure, which is not always easy to be obtained without
sacrificing the interpretability. In the work of Wu et al. [4], Support Vector Machine (SVM)
and Random Forest (RF) are used for sample classification. These two methods use the whole
spectra as input features and could conduct feature extraction simultaneous with sample classi-
fication. The problem for these method is that there are too many parameters needs to setup,
even though it’s possible to tune these parameters automatically, it’s not easy to produce repro-
ducible results based on these iterative procedures. A recent work by Tibshrani et al. utilized
Nearest Shrunken Centroids [15] for sample classification, by comparing the extracted feature
vectors in Euclidian distance (or other metrics), their classifier is essentially a nonparametric
nearest neighbor classifier. The performance of Nearest shrunken Centroids was compared with
those of SVM and RF under an external cross validation [16]. They found that the classification
performance is comparable, which is quite promising, since their Nearest Shrunken Centroids
method only used a selected feature sets, but not the full spectra.

In conclusion, the main task for the mass spectrometry analysis is trying to discriminate
cancer samples from the normal samples simply based on proteomic profile patterns. For this
purpose, we need to carefully process the raw data to reduce the effects of systematic noise. Also,
important features should be extracted for biomarker discovery and sample classification. In the

7



next section, we will summarize the dataset we use and report our results, a regression framework
for our analysis. An integrated regression framework is proposed for data preprocessing, a R
package named “RAMS” (Regression Analysis for Mass Spectrometry) is also developed and
made available online. Further experimental design and details will be in section 3. Further
discussions are presented in section 4.

2 Dataset and Results

Ovarian Cancer Dataset: The dataset was obtained from Yale’s biostatics group, published
in Wu et al. [17]. The spectra were obtained from ovarian cancer and control serum samples
from the National Ovarian Cancer Early Detection Program at Northwestern University Hos-
pital. These samples were then automated desalted and were conducted a MALDI-TOF mass
spectrometry analysis on a Micromass MALDI-L/R instrument. There are two modes for the
MALDI-L/R mass spectrometer: linear and reflectron modes. Two sets of data could be auto-
matically acquired in a positive ion detection model, with 700-3500 Da for the reflectron model
and 3450-28000 Da for the linear. There are altogether 170 spectra samples, consisting of 93
patients with ovarian cancer and 77 non-cancer controls. For our analysis, we are only interested
in the high resolution reflecton data, these spectra are measured at 94,780 sites, spaced 0.019Da
apart. A visualization of one of the raw spectra is shown as in figure 3
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Figure 3: Visualization of one raw spectrum for our dataset

RAMS framework: RAMS (Regression Analysis for Mass Spectrometry) is an R package
developed for MALDI-TOF or SELDI-TOF mass spectra analysis. Figure 4 is its flowchart.
From which, we see that the whole analysis could be divided into three components. Regression
analysis (both parametric and nonparametric approaches) is intensively used for data prepro-
cessing. Parametric methods include the simple linear regression, regression through origin
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and robust regression. Nonparametric regression mainly includes Kernel regression and cubic
splines; Model selection techniques, like two sample t-test, Lasso or forward stepwise selection
are adapted for feature extraction; Different classification models are also included as modules,
including Naive Bayes (NB), Nearest Neighbor Classifier (KNN), Logistic Regression (LR), Gen-
eralized Additive Models (GAM), Support Vector Machines (SVM), Trees, and Linear/Quadratic
Discriminant Analysis (LDA/QDA). As shown in figure 4, all these procedures are under an ex-
ternal cross-validation framework, we have two versions of the cross validation: 10-fold cross
validation and subset randomly splitting cross validation. For each step, different algorithm
modules could be selected. For example, when conducting background substraction, either a
loess estimator or a local linear regressor could be used. For the classification step, we may
use either Logistic Regression or Generalized Additive Models. All of our analysis is under this
RAMS framework.

Step 1:Data 
visualization & 
transformation

Step 2: Spectra 
background
subtraction

Step 3: Peak intensity 
normalization

Step 4: Peak detection

Step 5: Peak alignment

Step 6: Feature 
Extraction

Step 7: Spectra sample 
classification

Cross Validation

Exploratory Data 
Analysis (EDA)

Local Linear 
Regression & 

Loess Smoother

Regression through 
Origin

& Huber’s M-estimator

Natural Cubic Splines 
& Neighborhood 

Maxima Detection

Simple Linear 
Regression & Median 

Spectrum

Forward stepwise 
Selection & Lasso & 
Two sample t-test

LDA, KNN, LR, NB, 
SVM, GAM,Tree

Figure 4: Flowchart of the RAMS analysis
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Results: Using RAMS, we compared the classification performance of different classifiers.
The classification performance with and without some preprocessing steps (e.g. peak alignment)
are measured and showed that these preprocessing procedures are really crucial. By conducting
some goodness-of-fit test, we validate the consistency between the modelling assumption and
the observed data. Under the assumption that the misclassification error is approximately
distributed as Normal, we showed that the classification performance based on proteomic-profile
spectra data could lead to a statistically significant improvement than random guessing, which
demonstrates the prominence of the mass spectrometry approach for early cancer detection. The
performance of RAMS is fairly comparable with the best published results on this dataset, but
our approach is simpler and much easier to be understood by both statisticians and biologists.
By a careful examination of the extracted biomarkers, we also evaluated and verified the internal
reproducibility of RAMS.

3 Experimental Results and Analysis

In this section, individual steps and results will be described in detail, for each step showed in
figure 4, we briefly illustrate the methods that RAMS adapted and some intuitive justifications
about its rationale.

3.1 Step 1: Data transformation

Notice that there are several order of magnitudes of peak intensities, we take the logarithm of
the intensity values, one of the log-transformed spectra was shown in figure 5
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Figure 5: Visualization of one logarithm-transformed spectrum

From figure 5, we see that the peak intensity range are from 7∼10, while that of the raw
spectra are ranged from 1000∼10000. Also, followed from Tibshrani et al. [7], we log-transformed
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the m/z axis. As pointed by Tibshrani et al., the peak widths were about 0.5% of the corre-
sponding m/z value, and this relationship is approximately linear. Therefore, the logarithmic
transformation of m/z values could make the peak widths approximately constant across the
whole range and will greatly ease the downstream peak alignment algorithms. The visualization
of the spectrum looks the same as in figure 5, the only difference is that the x-axis is now in
log-scale. I figure 6, we showed the density and Q-Q plot of one particular peak intensity at the
7th site, this further justifies why a logarithmic-transformation is suitable.
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Figure 6: The density and Q-Q plot for a particular peak intensity

3.2 Step 2: Baseline Subtraction

For the purpose of baseline subtraction, the basic approach is to fit the spectra-specific back-
ground first and subtract the fitted curve from the raw spectra. This is essentially a problem of
nonparametric curve fitting. Both local linear smoother and “Loess” smoother could be applied
for this purpose. The local linear smoother is a kind of kernel regressor which minimizes the
locally weighted sums of squares

RSSl =
n∑

i=1

K

(
Xi − x

h

)
(Yi − a0 − a1(Xi − x))2 (3)

where K(·) is a selected kernel, which does not effects the fitted results much. Yi is the ith
peak intensity. Xi is the corresponding m/z value at the ith site. Rewrite it in the form as
(Y −Xxa)T Wx(Y −Xxa), the weighted least squared estimator for a is

â(x) = (XT
x WxXx)−1XT

x WxY (4)

In particular, r̂n(x) = â0(x) is the inner product of the first element of the estimated â. The
optimal bandwidth h could be selected by minimizing the generalized cross-validation (GCV)
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score. The Loess smoother, originally proposed by Cleveland [18], is a method that is (somewhat)
more descriptively known as locally weighted polynomial regression. At each point in the data
set a low-degree polynomial is fit to a subset of the data, with covariate values near the point
whose response is being estimated. A parameter named ”span” represents the proportion of data
we want to use to fit a particular point. Thus, it could be used to control the model complexity.
From our experience, there is not much difference between these two types of local smoothers.
With 94,780 samples and only 1 covariate, both of them could be fitted very well. The first plot
of figure 7 illustrates the fitted baseline for the selected spectrum.
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Figure 7: The fitted baseline for the selected spectrum and the baseline subtracted spectrum

Figure 8 showed the estimated 95% confidence band for the mean of the estimated baseline
and the estimated variance at each point. To estimate the variance, we assume that

Yi = r(xi) + σ(xi)εi (5)

Let Zi = log(Yi − r(xi))2 and δi = log ε2i ). then Zi = log(σ2(xi)) + δi. In more detail, we first
estimate r(x) with local linear smoother to get an estimate r̂n(x). Then, simply regress Zi’s
on the xi’s with local linear smoother again to achieve an estimate q̂(x) of log σ2(x) and ˆσ2(x)
should be eq̂(x). To estimate the confidence band, assume we use a linear smoother, that is,
r̂(x) =

∑n
i=1 li(x)r(xi). The following formula could be used [19]

I(x) = (r̂n(x)− cσ̂||l(x)||, r̂n(x) + cσ̂||l(x)||) (6)

where, the constant c is chosen as 2 (1− Φ(c)) + κ0
π e−

c2

2 = α, while κ0 =
∫ b
a ||T ′(x)||dx, T ′(x) =

(T ′1(x), ..., T ′n(x)), and Ti(x) = li(x)/||l(x)||. From figure 8, we see that the confidence band is
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Figure 8: The estimated variance and confidence band for the fitted baseline on each m/z point

very loose when m/z is small and it becomes tighter with the increase of m/z. Also, the second
plot of figure 7 showed the background subtracted version of the same spectrum in figure 5. It’s
obvious that some peak intensities will become negative by this approach, but this will not affect
their discriminative power.

3.3 Step 3: Spectra Normalization

Robust regression is used by RAMS for spectra normalization. First, we calculate the median
of the m/z values and the peak intensities at each point to form a “median spectrum”. The
intensities of every spectrum are then normalized by calculating a normalization factor with
this median spectrum. This is essentially a problem of regression through origin. Huber’s M-
estimator is adopted. For which, we choose the factor β to minimize

RSSM =
n∑

i=1

ρ

(
Yi − xi · β

s

)2

(7)

where s is defined as mediani|Yi−medianjYj/0.6745, while ρ is the Huber function, (c is chosen
to give a 95% efficiency at the Normal)

ρ(x) =
{

x2 |x| ≤ c
c× (2|x| − c) |x| > c

(8)

For each spectrum, we could calculate a normalization factor with respect to the median spec-
trum and their Pearson’s correlation coefficient. One thing to note is that the calculated nor-
malization factor could be used as a metric for spectra quality assessment. Due to the effects of
chemical noise or electronic fluctuation, some spectra may not be valid at all. From the figure 9,
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we see that, among 80 spectra in the training set (40 from the cancer group, 40 from the control
group), the spectra # 2 and # 47 have a very negative normalization factor and the Pearson’s
correlation coefficient is less than 0, if a threshold 0.2 is setup, these two spectra could be removed
from the current training set as outliers. From figure 9, even though the normalization factor
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Figure 9: Normalization factor and the Pearson correlation coefficient for 80 spectra in the
training dataset

plot and the Pearson’s correlation plot looks very similar, they convey different information.
The normalization factor plot represents the “magnitude” of a spectrum corresponding to the
median spectrum, while the Pearson’s correlation represents the “linear relationship” between
them.

3.4 Step 4: Peak Detection

Since we are only interested in the biological meaningful peaks as biomarkers, it’s a better
strategy to detect them before the feature selection step. For this, a natural cubic spline is used
to further smooth the data. Then, the peaks are deemed as local maxima in a bandwidth s
neighborhood. For the cubic spline, by choosing B1, ..., BN as the power basis, we need to find
the coefficients β to minimize

(Y −Bβ)T (Y −Bβ) + λβT

∫
Bj

′′(x)Bj
′′(x)dxβ (9)

the value of β that minimizes it is

β̂ = (BT B + λ

∫
Bj

′′(x)Bj
′′(x)dx)−1BT Y (10)

Also, we deem a point as a peak only if there are at least s successive points in the neighborhood
show a progressive increase and decrease in the background corrected, spline smoothed spectra.
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The tuning parameter s could be controlled by cross-validation. However, for the purpose of
our analysis, we want to keep as more information as possible, we choose s = 5. The first plot
of figure 10 shows the cubic spline smoothed version of the same spectrum as in figure 5.
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(a) Natural cubic spline smoothed spectrum
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(b) Detected peaks (red point) from the spline smoothed
spectrum with s = 20

Figure 10: The spline smoothed spectrum and the detected peaks

The second plot of figure 10 illustrates the detected peaks by the local maxima neighborhood
algorithm with s = 20, from which, we see that even though many intensities are obvious local
maxima, they can not be deemed as biologically meaningful peaks because their neighborhood
do not show a progressive ascending and descending trend.

3.5 Step 5: Peak Alignment

Due to the instrumental measurement error and some other unknown factors, the same peak
across different spectra has a nonlinear shift. We applied simple linear regression to make a
coarse alignment. Then, a refined alignment is done by a restamping/binning based on the
median spectrum. For each spectrum, a global mass shift δ is calculated as

δ = Ȳ − X̄ (11)

where Ȳ is the mean intensity of the median spectrum, while X̄ is the mean intensity of this
spectrum.

Since we have already log-transformed the m/z values, the peak width now should be sta-
tionary with respective to log(m/z). We binned the log(m/z) of the median spectrum. When
calibrating different spectra, only the maximum peak in each bin is retained. The bin number
m could be selected by cross-validation. For our analysis, m = 10, 000 is a fixed value.
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3.6 Step 6: Feature Selection

Feature selection is a crucial step for Biomarker discovery. Since the data is in high dimensions,
we use a combination of two sample t-test and Lasso/forward stepwise selection. The standard
setting for the two sample t-test is defined as in formula 1. Having calculated the Tk, the p-value
is the tail probablity of the t-distribution with a degree of freedom n1+n2−2 . A coarse variable
selection for RAMS is done by choosing the smallest 100-200 p-values calculated from the two
sample t-test.

Based on the coarsely selected variables from two sample t-test, Lasso is then used to conduct
a finer selection. For Lasso, we want to find the β to minimize

RSSL1 =

(
n∑

i=1

(Yi −Xiβ)2 + λ||β||1
)

(12)

where λ > 0 and ||β||1 is the L1 norm of the vector β. The constant λ can be chosen by the cross
validation score. This L1 norm regularization could lead to a sparsity solution. Besides Lasso,
we also tried forward stepwise selection with Bayesian Information Criterion (BIC) for variable
selection. Even though its property, the performance is close to Lasso for this dataset. Figure 11
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Figure 11: Left: The Lasso plot for feature selection Right: The Mallow’s Cp score vs. the
degree of freedom

shows the coefficients vs. degrees of freedom plot for Lasso when the number of features is 30
and illustrates the corresponding Mallow’s Cp score for feature selection. We see that, after a
coarse selection by the two sample t-test, if we apply Lasso on the remained 30 features, the
Mallow’s Cp score is minimized when 14 variables are selected. As pointed by Tibshrani et
al. [7], two sample t-test may not be the best criterion for feature selection. RAMS only adopted
two-sample t-test as a coarse selection step, while a fine feature extraction step is based on Lasso.
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Some more sophisticated methods, such as PPC as discussed before, could also be plugged in as
a module into the whole framework.

3.7 Step 7: Sample Classification

For the chosen ovarian cancer dataset, there are only two classes, cancer (G = 1) or control
(G = 0). Therefore, it’s a binary classification problem. We compared and evaluated 7 methods
under the RAMS framework, including: Naive Bayes (NB), Generalized Additive Model (GAM),
Linear and Logistic Regression (LR), Linear/Quadratic Discriminant Analysis (LDA/QDA),
Classification and Regression Trees (CART), and the Support Vector Machine (SVM), these
classifiers are briefly summarized here

Bayes’ rule for classification Most of the classification methods are based on Bayes’ Rule:
assume that r(x) = E(Y |X = x) = P(Y = 1|X = x) denotes the regression function, Bayes’ rule
h∗ satisfies

h∗(x) =
{

1 if r(x) > 1
2

0 otherwise
(13)

The set D(h) = {x : r(x) = 1/2} is called the decision boundary. If we know the true function,
a classifier satisfies Bayes’ rule should be optimal [19]

Linear and Logistic Regression: The approach of Linear and Logistic Regression for sample
classification is to estimate the regression function r̂(x) first, then, the Bayes’ rule is used

ĥ∗(x) =
{

1 if r̂(x) > 1
2

0 otherwise
(14)

For the linear regression model, the regression function is estimated as r(x) = β0+
∑d

j=1 βjXj+ε.
For the Logistic Regression

r(x) = P(Y = 1|X = x) =
exp{β0 +

∑
j βjxj}

1 + exp{β0 +
∑

j βjxj} (15)

Linear/Quadratic Discriminant Analysis (LDA/QDA) For Quadratic Discriminant Anal-
ysis (LDA), each class is modeled by a multivariate Gaussian distribution, for k = 0, 1

fk(x) =
1

(2π)d|Σk|1/2
exp

{
−1

2
(x− µk)T Σ−1

k (x− µk)
}

Thus, X|Y = k ∼ N (µk,Σk), then the Bayes’ rule is

ĥ∗(x) =

{
1 if r2

1 < r2
0 + 2 log

(
π1
π0

+ log(Σ0
Σ1

)
)

0 otherwise
(16)

where rk = (x − µk)T Σ−1
k (x − µk), (k = 0), 1 is the Manalahobis distance, if we assume that

different classes have a equal variance-covariance matrix, QDA is reduced to LDA.

Naive Bayes and Generalized Additive Model: Naive Bayes works by estimating the
underlying density, rewrite the Bayes’ rule as

h∗(x) =

{
1 if f1(x)

f0(x) > 1−π
π

0 otherwise
(17)
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Assuming that X1,..., Xd are independent, that is fk(x1, ..., xd) =
∏d

j=1 fkj(xj), (k = 0, 1).
When using some one-dimensional density estimators and multiply them, we have f̂k(x1, ..., xd) =∏d

j=1 f̂kj(xj), (k = 0, 1). If π is estimated as π̂ = 1
n

∑
i Yi, the Bayes’ rule for the Naive Bayes

classifier is

ĥ∗(x) =

{
1 if f̂1(x)

f̂0(x)
> 1−π̂

π̂

0 otherwise
(18)

The Generalized Linear Model has the form

logit
(

P(Y = 1|X)
P(Y = 0|X)

)
= β0 +

d∑

j=1

gj(Xj) (19)

Naive Bayes and Generalized Additive models are closely related, the discussion could be found
in [19]

Nearest Neighbors K Nearest Neighbor classifiers (KNN) finds the K objects (or neighbors)
in the training data that are closest to it, it follows a so-called k-nearest neighbor rule

h∗(x) =

{
1 if

∑n
i=1 wi(x)I(Yi=1)∑n
i=1 wi(x)I(Yi=0)

> 1
0 otherwise

(20)

where wi = 1 if Xi is one of the k nearest neighbors of x, wi(x) = 0 otherwise, often, Euclidean
distance ||Xi −Xj || is used to evaluate the neighborhood relationship.

Trees: Trees are classification methods that partition the covariate space X into disjoint piectes
and classify them by majority vote. To construct a tree, suppose that y ∈ Y = {0, 1}. For
the jth covariate Xj , j = 1, .., d, a split point t is chosen so that it divides the real line into
Ai = (−∞, t] and A2 = (t,∞). Let p̂s(k) be the proportion of observations in As, such that
Yi = k, for k = 0, 1, s = 1, 2:

p̂s(k) =
∑n

i=1 I(Yi = k, Xji ∈ As)∑n
i=1 I(Xji ∈ As)

(21)

The impurity of the split t is defined as I(t) =
∑2

k=1 γk, where γs = 1 − ∑1
k=0 p̂s(k)2, this

particular measure is named Gini index, The whole construction procedure is greedy, each time,
we look for the j, so that spliting Xj could lead to the greatest decrease of the impurity. Of
course, other criteria, such as BIC, AIC, or least sqaured error could be used alternatively.

Support Vector Machine: Support vector machine is basically a linear classify which trying
to find a maximum margin hyperplane, for j = 1, ..., d, define

α̂j =
d∑

i=1

α̂iYiXj(i)

where Xj(i) is the value of the covariate Xj for the ith data point, and α̂ = (α̂1, ..., α̂n) is the
vector that maximizes

n∑

i=1

αi − 1
2

n∑

i=1

n∑

k=1

αiαkYiYk〈Xi, Xk〉 (22)
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Figure 12: Left: A fitted full tree with 30 features Right: Leave-one-out cross validation score
for the tree

subject to αi ≥ 0 and
∑

i αiYi = 0. This problem could be solved by quadratic programming
package. The final hyperplane could be written as

Ĥ(x) = α̂0 +
n∑

i=1

α̂iYi〈x,Xi〉 (23)

3.8 Classification Performance Evaludation

To evaluate the performance of different classifiers, since Naive Bayes and Generalized Additive
Model are mathematically equivalent [19], their performance are expected to be similar. We
only consider Generalized Additive Model in the following analysis. Some classifiers, like Trees,
are always trying to overfit the data, we need to prune it to control the model complexity. The
first plot of figure 12 shows a fitted tree with 30 features. The second plot of figure 12 shows
the leave-one-out cross validation plot with misclassification error as criterion. We see that only
4 nodes are needed. For the purpose of evaluation, simply divide the raw dataset into training
and testing set is not enough. As shown in figure 13, in which we randomly split the raw dataset
into two parts, 80 spectra for training and the remaining 90 for testing, and applied Logistic
regression on it. The figures illustrates the relationship between the misclassification error and
the number of features included for training the classifier, the line is quite bumpy, which is a sign
that randomly split the data once may not be enough. For our analysis, 10-fold cross validation
are used. ie. 10 percent data are left out as the validation set, the classifier are trained on the
remaining 90 percent data and the prediction performance are evaluated on the validation set.
After 10 iterations, all the data in the raw dataset have been utilized. The misclassification error
on 10 parts will be averaged to get a 10-fold CV score. Table 1 shows the classification results
for 8 classifiers with 10-fold cross validation (with 20 and 30 features respectively).
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Table 1: Misclassification rates for eight classification methods applied to the Ovarian cancer
dataset, with and without peak alginment.

20 features 30 features
Peak Aligned Not Aligned Peak Aligned Not Aligned

Linear Discriminant Analysis 0.5176471 0.5588235 0.4705882 0.5823529
Quadratic Discriminant Analysis 0.4764706 0.5176471 0.4705882 0.5623592
Linear Regression 0.5176471 0.5764706 0.4705882 0.5823529
Logistic Regression 0.4941176 0.5764706 0.5588235 0.5470588
1-Nearest Neighbour Classifier 0.3588235 0.4352941 0.40 0.3947059
Generalized Additive Model 0.4941176 0.5588235 0.5588235 0.5529412
Support Vector Machine 0.3588235 0.4352941 0.40 0.4176471
Trees 0.5411765 0.5235294 0.4941176 0.5235294

For the practical purpose of cancer diagnosis, we do not want the number of biomarkers to
be too huge, generally speaking, 10-30 biomarkers should be fine. Therefore, for the results we
reported here, we only considered two cases: 20 features kept and 30 features. Also, to show that
the peak alignment does really help, we compared the mis-classification rate with and without the
peak alignment procedure. From this table, we see that Support Vector Machine and 1 Nearest
Neighbor perform the best. When there are 20 features included, the misclassification rate is
0.3528 for both of them. From the analysis of Wu et al. [4], both SVM and LDA performed as the
best method on another dataset. In our analysis, SVM is still also the best, which is consistent
with their’s results. However, LDA performs worese than SVM and 1-NN. One reason might be
that we use a different dataset here, another reason may due to the difference between the peak
alignment and feature selection procedures by RAMS with their approaches. The classification
performance of different classifiers with the peak alignment as a preprocessing procedure are
uniformly better than those without the peak alignment. This shows that the step for peak
alignment does really helpful.

Figure 14 shows the boxplots for these classifiers when number of features are 20 and 30. The
last boxplot is a dummy method as our baseline, it simply randomly guess 1 or 0 according to a
Binomial distribution with parameter 0.5. From these two boxplots, it’s obvious that SVM and
1-NN’s performances are better than the remaining methods. If we assume that the underlying
distribution for the CV score is Normal, a pairwise two sample t-test [20] is condcuted to test
whether the improvement of classification performance is statistically significant or not.When
feature number = 20, the 10-fold cross validation result from SVM are compared with that from
the baseline method, the T-statistic is -3.4245 with 9 degrees of freedom. The obtained p-value
= 0.007574, with level α = 0.05, which is a strong evidence against the null hypothesis that
these two groups have the same mean. Therefore, we conclude that this decreasement of the
misclassification rate is statistically significant.
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Figure 13: Misclassification rate of the Logistic Regression for different number of features
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3.9 Step 8: Reported Biomarkers and internal reproducibility

With number of features = 20, there were 20 potential biomarkers detected, they were reported
in table 2 according to the ranking:

Table 2: Reported potential biomarkers by 10-fold cross validation, the m/z and Intensity are
values from the median spectrum

order M/Z (Da) Intensity
1 828.520 0.024475165
2 835.950 -0.032946414
3 880.700 -0.002384472
4 847.170 0.001361237
5 828.580 0.007853288
6 835.890 -0.039581336
7 768.270 0.035737468
8 825.710 -0.001525047
9 704.460 0.062437628
10 836.010 -0.030958591
11 871.330 0.024213808
12 884.360 0.039047785
13 880.660 -0.001213880
14 825.650 0.006621555
15 871.375 0.036258617
16 812.380 0.061968575
17 726.570 0.045650803
18 710.700 0.054321409
19 871.420 0.051560495
20 844.840 -0.031171868

This table was generated by 10-fold cross validation. For each fold, on the 90 percent of the
data, RAMS select the most important 20 features. After an iteration of all the 10 folds, all the
features are ranked by their show up frequency across these 10 folds. In table, some intensities are
negative, this is resulted from the baseline correction of the median spectrum. We also noticed
that almost all of the biomarkers are in the mass range 700 - 900. However, from figure 8, we
found that the estimated variance for the estimated baseline curve is quite large in this area,
there we do not have a high confidence about our estimation. Generally, a mass spectrometer
can not achieve a stable model in the low m/z area. Therefore, whether the discriminative power
of these potential biomarkers comes from the underlying biological process or simply comes from
some artifactual noise is a meaningful topic which needs further investigation. Checked with
10 fold cross validation, we found that these biomarkers are internally reproducible within this
dataset. Whether it’s reproducible across different datasets or serum samples is still not clear.
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4 Conclusion and Discussion

Cancer classification based on proteomic-profile data is a hard task due to the convolution of
biological signals and artifacts noise. A series of preprocessing steps are needed to make the
analysis valid: baseline correction, spectra normalization, peak detection and alignment, fea-
ture selection, data transformation could all affect the final classification performance. From
a statistician’s perspective, we proposed and developed a R package RAMS which intensively
uses modern regression and classification methods as its module for cancer diagnosis based on
MALDI-TOF or SELDI-TOF mass spectrometry data. Nonparametric kernel regression is used
for baseline correction. Robust regression is used for spectra normalization. Natural cubic
splines is used as an initial smoothing step for peak identification. Some modern methods for
nonparametric variance estimation and confidence band construction are also included. Lasso
regression, forward stepwise selection, and two sample t-test are mainly used for feature se-
lection. Different classification methods, like nearest neighbor classifiers, naive Bayes, support
vector machine, generalized additive model, linear/quadratic discriminant analysis, Trees are
also included in RAMS for sample classification. Using RAMS, we analyze an Ovarian cancer
dataset and achieved a classification result which is comparable with the other groups. For the
purpose of biomarker discovery, instead of using the whole raw spectra, RAMS selected a subset
of more simple and tractable features and try to classify on it. For some classifiers, like SVM,
which may deal with the original high dimensional raw spectra directly based on some kernel
tricks and the classification performance may achieve a little bit better performance. However,
it’s not natural for biomarker discovery, which is a very important goal for MALDI-TOF or
SELDI-TOF mass spectrometry analysis.

Discussion - Classification with noise
The concept so-called“classification with noise”was first introduced into the area of proteomic-

profile mass spectrometry analysis by Baggerly et al. [5] for a reanalysis of the SELDI-TOF
datasets published by Petricoin et al. [13]. By some simple iterative method, they found mul-
tiple feature sets that could perfectly classify the spectra samples. They believed that this low
misclassification rate is due to some artificial factors. e.g., a shift between the chip types or
a change of electronic voltage, dominates the underlying patterns of the raw data. A perfect
classifier trained with the pattern of these artifactual noise can not generalize well. Which makes
the discovered biomarkers invalid. Our analysis did not deal with this issue explictly. How to
generalize the RAMS framework to handle this problem is an interesting topic for the future
investigation.
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