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What is a Cache?

l(hitll H it RatiO:
CACHE ) Fraction of

small but fast: 0.5 us requests
found in cache

DISK

large but slow: 100 us




Cache Eviction Policies

Most Common: LRU

Evict least recently accessed item
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Why LRU is most popular

Data Access patterns show
temporal locality.
Recently accessed data is more
likely to be accessed again.

' LRU is designed
Peter Denning for this!




CACHE

small but fast:
0.5 us

DISK

large but slow: 100 us
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But in my caching system:

WORSE
Latency &
Throughput

Ziyue Qiu

Hmmm...
Super
interesting!



Seems no one has actually
studied the
between hit ratio and
throughput/latency...
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Thesis of Talk

For today’s LRU-based caching systems,
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Caching System Implementation

J Prototype of Meta’s HHVM cache

(d Run on CloudLab platform

(1 Requests are for 4KB blocks from Zipfian (0 = 0.99) popularity distribution
d Intel Xeon Platinum CPU for cache with 72 cores.

(] KEY POINTS:

» DRAM-based cache
o Very fast (0.51 us) & Highly concurrent (72 cores)

» SSD-based disk

o 100 us but we emulate range from 5 us — 500 us
o Highly concurrent (72 concurrent requests)

» Each request is handled by a single core.
Total # requests in system is limited by #cores = MPL = 72




Queueing model for LRU caching system

MPL =72
1 O
Delink \\
E|Sqeiink] = 0.7 us

Cache Lookup

E|Zcqche]l = 0.51 us

Disk Access Tail Update
E[Zgis] =100 us  ElStau] =0.59 ps
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Head Update

E[Sheqal = 0.59 us
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Q-theory: “Find the bottleneck”

MPL = 72 m\

Delink \
E[Sqetink] = 0.7 us G

Is this it? Head Update
E[Sheaal = 0.59 us

Cache Lookup
E[anche] = 0.5

Tail Update
E|S¢qi] = 0.59 us 1

Disk Access
E|Zgisk] = 100 s



MPL =72

Delink \
E[Sqeiink] = 0.7 us k >—-—

Head Update
E[Sheqal = 0.59 us

Cache Lookup
E|Z qchel = 0.51 ps

Disk Access Tail Update
E[Zdisk] = 100 us E[Stail] = 0.59 Us

STEP 1:
Thmk E[Z] — E[anche] + (1 _ phit)E[Zdisk]
time 12




MPL =72

Cache Lookup
E[anche] = 0.51 Us

Disk Access Tail Ug

Delink \
E[Sdelink] = 0.7 us ‘ : |

Head Update
E[Shead] = 0.59 Us

E[Zdisk] = 100 Uus E[Stail] BOttle-neck
Device

STEP 2: Daeiink = Dnit - (0.7)
Device Diait = (1 — ppie) - (0.59) - D,y =—

Dhead if pric < 0.84

Dgeiink it prir = 0.84

demands Doy = 0.59

S —
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= 0.59 us
=051 us Disk Tail Update
E|S:,i;] = 0.59 us
= 100 us

Head Update
E[Shead]

MPL 1
Throughput = X < min( )

D+ E[Z] ° Djgx

72 1
101.1 — 99.3py;t max(0.59, 0.7pp;t)

E[Z] — E[anche] + pmissE[Zdisk]

Daetink = Pnit * (0.7)

Digit = (1 — ppir) - (0.59)
Dhead — 059

D = Dgeiink + Dtait + Dheaa

Dheaa if prie < 0.84

Dmax T

Dgeiink it pnir = 0.84

—
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3 Regimes

= 0.59 us

Tail Update
E[Stqi]l = 0.59 us

’:’ Pnit < 059
= X = Left term

=>» X increases with py;;

Head Update
E[Shead]

% 0.59 < pp; < 0.84
> X =
D

Throughput = X < min(

MPL 1
D+ E[Z] ° Djgx

1
101.1 — 99-3PhitJ {maX(O.S(), O.7phit)}

X Pnit > (0.84

1 1
= X = =
0.7Dhit

Ddelink
=>» X decreases with py;;
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Queueing network simulation

Implementation

1.0

3 Regimes

’:’ Pnit < 059
= X = Left term

=>» X increases with py;;

% 0.59 < pp; < 0.84
> X =
D

1 1

X Pnit > (0.84
9 Y — 1 . 1

Dgetink  0.7Dnit
=» X decreases with pp;;
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Summary

MPL = 72

When p;,;; is high:

Cache

Delink

E[Sdelink]

= 0.7 us

Head Update

E[Shead]
= 0.59 us

J
o)
E[anche]
= 0.51ps Dsk Tail Update
E(S;,i;] = 0.59 us
E[Zdlsk] [ tall] l"l
= 100 us

D__ |

> Delink server becomes
bottleneck

» Increasing py;; increases
demand on Delink
server, making queue
even longer
=> Request latencyT

Throughput )

17



Same story holds for all LRU variants

Becomes bottleneck
when py;¢ is high,
because on hit path.

IO—
— HeadT Update
Phits = Pmiss E[SheadT] = 0.59 Hs

MPL =72

O

DelinkT
[SDelka = 0.7 HUS

O~

DelinkB TailT Update HeadB Update  Phrits + Pmiss

E[Saciinke]  ElStaurr] E[Syeqap] = 0.59 us
= 0.7 us < 0.59 us

o |
07 Segmented LRU (SLRU)
@

_ TailB Update .
Disk Access E[S,uim] < 0.59 s Advanced LRU pOlICV
E|Z4is1] = 100 us

Phits

Pmiss

E|Zcqche]l = 0.51 us
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Future trends

1. Disks will get faster.

2. Concurrency level will increase
for both cache and disk.

How do these

affect pp;.?




Faster Disk Speed
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Both trends decrease py ;.

Recall:

_ < MPL 1 )
X < min

D+ E[Z] ~ D,y

Om As MPLT and

Delink
E[Sdelink]

Head Update E[Zgisi) ¥
o E[Sheqal the D4, term
ElZ qchel : = 0.59 us matters sooner.
=0.51 ps Dsk Tail Update
E|S;qi1l = 0.59 us
E[Zdigk] [ tall] U

= 100 us




For FIFO-based caches, X-put only rises

EREEE

Hit Ratio

MPL =72

Throughput

> D_’O*

Tail Update  Head Update

No bottleneck
device on py;; path!
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Breakdown of Cache Eviction policies

LRU-like behavior FIFO-like behavior

Hit Ratio Hit Ratio
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Improving future Caching Systems

_ Q: Why not just forgo LRU
The problem with LRU: altogether & do FIFO?

A: FIFO is less efficient in its
use of cache space!

What we really need is some combination of LRU & FIFO!

o Naive mixture: Probabilistic-LRU
o Better idea:

g As ppi¢ gets high, if X-put starts dropping,
skip doing Delink step (as in FIFO).




Conclusion

Higher WORSE
Hit can lead to> Latency &
Ratio Throughput

How was this missed?

Mor Harchol-Balter, Carnegie Mellon University.



Higher Concurrency

MPL 16

MPL 72

MPL 144

Throughput Throughput

Throughput

.

Hit Ratio

P~

Hit Ratio

Hit Ratio

F

aster Disk Speed

500us 100us 5 I

Throughput

T,
j
d
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In the olden days:

[ Disks were slower

1 Cache concurrency was lower = low MPL

Throughput

US
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Conclusion

Higher WORSE
Hit can lead to> Latency &
Ratio Throughput

How was this missed?

» Olden days: Slower disk + lower MPL = “top left corner”: higher hit ratio helps

» Also in olden days: lower disk concurrency = Queueing at disk =» Disk is bottleneck
» But today with concurrent disks, bottleneck has shifted to cache operations.

» Operations on the hit path (Delink) become bottleneck when p;,;; is high.

» When this happens, throughput will drop. One solution: mix LRU & FIFO.

Mor Harchol-Balter, Carnegie Mellon University.
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