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Abstract

This paper uses a probe-based sampling approach to study the behavioural properties of
Web server scheduling strategies, such as Processor Sharing (PS) and Shortest Remaining
Processing Time (SRPT). The approach is general purpose, in that it can be used to
estimate the mean and variance of the job response time, for arbitrary arrival processes,
scheduling policies, and service time distributions.

In the paper, we apply the approach to trace-driven simulation of Web server scheduling
to compare and contrast the PS and SRPT scheduling policies. We identify two types of
unfairness, called endogenous and exogenous unfairness. We quantify each, focusing on the
mean and variance of slowdown, conditioned on job size, for a range of system loads. Finally,
we confirm recent theoretical results regarding the asymptotic convergence of scheduling
policies with respect to slowdown, and illustrate typical performance results for a practical
range of job sizes from an empirical Web server workload.
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1 Introduction

The Shortest Remaining Processing Time (SRPT) scheduling policy has received increasing at-
tention in the research literature recently, primarily in the context of request scheduling at Web
servers [2, 3, 5]. The SRPT policy selects for service the pending job in the system with the least
remaining service time. The policy is preemptive, so that if a new job arrives into the system
with a smaller service time than that remaining for the job currently in service, the scheduler
switches immediately to service the newly arriving job. The SRPT policy is provably optimal:
it guarantees the lowest mean response time for the system as a whole [12, 15]. Under overload,
SRPT also minimizes the number of jobs starved [2].

The primary concern with SRPT is that a large job in the system may be delayed indefinitely
if the continuous arrival of smaller jobs preempts it from service. Prior results in the literature
clearly establish the response time advantages of SRPT over a conventional scheduling policy
such as Processor Sharing (PS), particularly for small jobs. Small jobs are serviced much more
quickly under SRPT scheduling than under PS scheduling. However, jobs at the upper end of
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the job size distribution may experience worse performance under SRPT than under PS. Bansal
and Harchol-Balter illustrate this clearly in several of their papers [2, 5].

Harchol-Balter et al. [6] have recently established asymptotic bounds on the slowdown (de-
fined as the job response time divided by the job size) for the largest jobs under SRPT (or any
other) scheduling policy. In particular, their results show that slowdown asymptotically con-
verges to the same value for any pre-emptive work-conserving scheduling policy (even Longest
Remaining Processing Time, LRPT). In other words, for the largest of jobs, SRPT is no worse
than PS. In addition, they prove that for sufficiently large jobs, the slowdown under SRPT is
worse than under PS by at most a factor of 1 + ε, for small ε > 0. In our paper, we use the term
“crossover effect” to refer to the region where SRPT provides worse performance than PS.

The foregoing theoretical results for SRPT motivate our present paper, which focuses on
the performance “in practice” for typical job sizes at an SRPT Web server. There are two
specific issues that we address. First, the theoretical results mentioned previously hold only for
“sufficiently large” jobs. It is not clear what “sufficiently large” means in practice. (Of course,
this may be workload dependent.) Second, is the crossover effect observable in practice? If so,
for what range of job sizes does it occur?

In this paper, we use a probe-based sampling approach to evaluate job slowdown for SRPT
and PS scheduling policies in a simulated Web server system. We use trace-driven simulation
with empirical Web request streams from the 1998 World Cup Web site in an attempt to quantify
the behavioural properties of SRPT scheduling.

The sampling methodology provides a robust means of estimating the mean and variance
of job slowdown as a function of job size and system load. This approach enables a method-
ical study of the performance differences between SRPT and other scheduling policies. The
approach is general-purpose, in that it can be used for arbitrary arrival processes and service
time distributions. The approach is not limited to the M/G/1 queue assumptions, for instance.
Furthermore, the approach can be used to estimate the mean and variance of the response time
for any scheduling policy, even those for which no closed-form analytical solution is known.

One of the main observations from our experiments is that there are two types of unfairness
in a Web server scheduling system: endogenous unfairness that a job can suffer because of its
own size, and exogenous unfairness that a job can suffer because of the state of the Web server
(i.e., other jobs in the system) at the time it arrives. By quantifying these effects separately, we
provide new insights into the differences between SRPT and PS.

Our simulation results show significant performance advantages for SRPT for small (e.g., 1-10
KB) and medium size (e.g., 100 KB to 1 MB) jobs. The slowdown results for the SRPT and PS
policies asymptotically converge for the largest job sizes considered (e.g., 10 MB). These results
are consistent with the theoretical work in [6]. Finally, we apply the sampling methodology in an
attempt to observe the “crossover effect” in practice. The results for our Web server workload
show that at high load (95-99%), job sizes in the range of 2.5-4 MB experience slightly worse
performance under SRPT scheduling than under PS.

The remainder of this paper is organized as follows. Section 2 discusses background infor-
mation on Web server performance and SRPT scheduling. Section 3 explains the probe-based
sampling methodology. Section 4 describes the experimental methodology for our simulation
study. Section 5 presents the simulation results and analyses. Section 6 summarizes the paper.
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2 Background and Related Work

2.1 Web Server Performance

Web server performance is a popular theme in the recent research literature [1, 6, 9]. The user-
perceived performance for Web browsing depends on many factors, including server load, network
load, and the protocols used for client-server interaction. In this paper, we focus on one aspect
of Web server configuration, namely the scheduling policy for servicing HTTP requests.

The scheduling policy used at the Web server determines the relative order of service for
incoming client requests. The simplest scheduling policy, assuming a single-process Web server,
is First-Come-First-Serve (FCFS): requests are served serially in the order of their arrival. In
practice, most Web servers use multi-process or multi-threaded designs. With this approach,
many requests (typically hundreds to thousands) can be in progress at a time, each sharing the
available CPU, I/O, and network resources. This approach is commonly approximated with the
Processor Sharing (PS) scheduling discipline: if there are N requests pending in the system, then
each request receives service at a rate 1/N of the maximal rate. This approach shares resources
equally amongst contending requests.

The Shortest Remaining Processing Time (SRPT) policy optimizes mean job response time.
Using job size information, the SRPT policy selects for service the job that has the least remaining
service time. With this approach, the system throughput (i.e., job completions per second) is
maximized, and mean job response time is minimized.

2.2 Related Work

The classic theoretical work on SRPT scheduling in queueing systems was done over 30 years
ago [12, 13], and has seen renewed activity in the last 10 years [10, 11, 14]. SRPT is provably
optimal in terms of mean job response time [12, 15].

The investigation of SRPT scheduling for Web servers began about 5 years ago [3]. There is
theoretical work [2, 6], as well as a prototype implementation of SRPT scheduling in the Apache
Web server [5]. Experimental results confirm many of the performance advantages of SRPT
scheduling established in the theoretical work.

Despite this work in the research literature, concerns remain about the unfairness of SRPT
scheduling. The SRPT policy is not yet widely deployed in Internet Web servers, in part because
there is incomplete understanding of its behaviour for a realistic Web workload. It is on this
front that our paper makes its main contribution.

3 Sampling Methodology

This section explains the probe-based sampling methodology used for studying Web server
scheduling policies. Section 3.1 presents a simple example to provide some insight into the
dynamic behaviour of scheduling policies. Section 3.2 explains the sampling method itself.
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3.1 Preliminaries: Understanding SRPT Scheduling

Figure 1 illustrates the basic issues related to Web server request scheduling. On the left in
Figure 1 is a Web server workload. This simple example has 20 requests. The two-column
format shows the timestamp (in seconds) and the job (response) size in bytes for each request.
This trace format is assumed for Web server workloads throughout the paper.

The graphs in Figure 1 illustrate the dynamic busy period structure for four different Web
server scheduling policies (FCFS, PS, SRPT, and LRPT) at a Web server processing this work-
load. We assume that the Web server is idle when the first request arrives.

Figure 1(a) shows the instantaneous number of jobs in the system for the FCFS policy on this
workload, as a function of time. The unit size vertical upward steps represent job arrivals, and the
vertical downward steps represent job departures. Figure 1(b) shows the corresponding number
of bytes in the system for the FCFS scheduler. The vertical upward spikes represent job arrivals,
which can be of arbitrary size. The downward slope represents the byte service rate when the
server is busy. Whenever this downward slope meets the horizontal axis, the current busy period
ends, and the server remains idle until the next job arrival. Figure 1(c) shows the instantaneous
number of jobs in the system for the PS policy on the same workload, and Figure 1(d) shows
the corresponding number of bytes. Figures 1(e) and (f) show the corresponding results for the
SRPT policy, while Figures 1(g) and (h) show the results for LRPT.

Three observations are evident from Figure 1. First, while the times at which job departures
occur are different, the plots for “byte backlog” are identical for each of the scheduling policies
considered. This (obvious) property holds for any work-conserving scheduling policy, assuming
the same job arrival times, the same job sizes, and the same byte service rate. Second, the start
and end times of the busy periods are the same for each policy. This follows directly from the
first observation, and is again obvious. What this means is that the number of busy periods, as
well as the mean and variance of the busy period duration is invariant across (work-conserving)
scheduling policies. This invariant propery provides a useful validation check on the simulation
implementations of different scheduling policies. Third, and most important, the number of
jobs simultaneously in the system is different for each of the policies considered. For example,
on the sample workload illustrated in Figure 1, the SRPT policy never has more than 3 jobs
simultaneously in the system, while the FCFS and PS policies each have up to 5 jobs in the
system, and LRPT has up to 11 jobs in the system at a time.

The tradeoff between PS and SRPT scheduling policies is now more evident. With PS
scheduling, an arriving job receives immediate service, but its service rate may be low because of
the (larger) number of jobs in the system. With SRPT scheduling, a job either receives immediate
service at the maximal rate (if it has the least remaining service time requirement), or receives
no service while it waits (if it is not). The probability of immediate service depends in part on
the number of jobs in the system, but mostly on the relative sizes1 of the competing jobs.

The difference in “jobs in the system” is our focus in this paper. The probe-based sampling
methodology (described next) estimates the impact of this property on job response time.

1Intuition suggests that the fewer competing jobs in the system, the sooner service will be received, but this
is not necessarily true for SRPT: it depends on job size. Furthermore, if the pending jobs tend to be large, an
arriving job may be serviced soon, regardless of the number of jobs in the system.
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Figure 1: Simulation Results Illustrating Busy Period Structure for Four Scheduling Policies
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For scheduling algorithm S = ( FCFS, PS, SRPT, LRPT, ... ) do
For background load level U = ( 0.50, 0.80, 0.95 ) do

For probe job size J = ( 1 B, 10 B, 100 B, 1 KB, 10 KB, 100 KB, 1 MB, 10 MB ) do
For trial i = ( 1, 2, 3, ... N ) do

Insert probe job at randomly chosen point in original request stream
Simulate Web server scheduling policy on modified request stream
Compute and record slowdown metric for probe job

end for i

Plot marginal distribution of slowdown for this J, U, S combination
end for J

end for U
end for S

Figure 2: Algorithmic Overview of Sampling Methodology Using Probe Jobs

3.2 Probe-based Sampling Algorithm

Figure 2 provides a high-level description of the sampling methodology for quantifying the prop-
erties of SRPT and other scheduling policies. The sampling methodology is probe-based, and
relies on the PASTA principle: Poisson Arrivals See Time Averages.

The algorithm works as follows. Given a Web workload stream and a scheduling policy at the
Web server, a single probe job is inserted uniformly at random into the request arrival stream. The
Web server is then simulated using the modified request stream to determine the response time
for the probe job. By repeating the experiment N times (e.g., N = 3000, in our experiments)
with random placement (according to the PASTA principle) of the same probe job, we obtain
an estimate of the response time distribution for a job of that size. By repeating the experiment
with different probe job sizes, we assess the characteristics (e.g., mean response time, variance,
fairness, unfairness) of a specific scheduling policy. Varying the system load (e.g., by setting the
network link capacity) determines when unfairness is most pronounced, for a particular job size.

A naive implementation of the algorithm in Figure 2 would be compute-intensive, requiring
many executions of the Web server simulator, each with a slightly modified request stream. There
are several ways to expedite the simulations. For example, there is no need to re-simulate all the
busy periods that complete prior to the arrival of the probe job. Rather, it suffices to simulate (in
its entirety) the busy period in which the probe job arrives and completes. Similarly, there is no
need to simulate all busy periods that follow the busy period in which the probe job completes.

Our current implementation of the algorithm uses a checkpointing technique so that all job
probes are simulated using a single pass through the workload stream. Additional optimizations
could exploit parallelism in simulating probe jobs that affect disjoint busy periods. We have not
yet investigated this technique.
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4 Experimental Methodology

4.1 Simulation Model and Assumptions

Trace-driven simulation is used to evaluate the performance of different scheduling policies on a
simulated Web server. The input trace to the simulator follows the format introduced in Figure 1,
namely a two-column file containing request arrival time and response size in bytes.

The simulation assumes that the Web server deals only with static Web content, for which
response size is known by the server. A fluid-flow approximation is assumed for network transfers,
so that service time is proportional to job size. Outgoing network bandwidth is assumed to be
the bottleneck. We ignore propagation delays, packetization issues, and other network effects.
We also assume that the context switch cost2 for the server is zero.

The Web server model in the simulation is simple. A configuration parameter specifies the
service rate for the server, in bytes per second. A second configuration parameter specifies the
scheduling policy to be used. Currently, our simulator supports FCFS, PS, SRPT and LRPT. A
request that arrives to an idle server begins service immediately at the specified byte service rate.
A request that arrives to a busy server either waits its turn (FCFS policy, and possibly SRPT
and LRPT depending on job sizes), or begins service immediately (PS policy, and possibly SRPT
and LRPT depending on job sizes). The PS policy adjusts the per-job service rate dynamically
at the time of arrival and departure events based on the number of jobs in the system. The
SRPT and LRPT policies dynamically choose the next job to service, based on remaining bytes,
preempting as necessary.

Instrumentation in the simulator records job arrivals, job departures, and the byte backlog in
the system at arrival and departure events. The simulation also records information about busy
periods, idle periods, and the number of jobs and bytes in the system during busy periods.

4.2 Web Server Workload Trace

The Web server workload used in our experiments3 is an empirical trace from the 1998 World
Cup Web site [1, 7]. The trace has 1 million requests, representing just over 14 minutes of server
activity. The arrival process is stationary over this interval, with an average rate of 1160 requests
per second. The largest 1% of the transfers account for 20% of the bytes transferred.

Table 1 provides further information about the trace. In our experiments, we augment the
one-second resolution timestamps in the original trace to distribute requests randomly (uni-
formly) across each one-second interval, while preserving the order of arrivals.

2This assumption favours the PS scheduling policy, which can potentially have an unbounded number of
context switches, depending on the server quantum size chosen (e.g., 1 byte). The maximum number of context
switches is bounded for policies such as FCFS and SRPT (N and 2N , respectively, for N job arrivals [2]).

3We have also conducted similar experiments with synthetic traces [4]. The results are qualitatively similar,
and too numerous to report here.
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Table 1: Characteristics of Empirical Web Server Workload Used (World Cup 1998)

Item Value

Trace Name wc day66 6.gz
Trace Date June 30, 1998
Trace Duration 861 sec
Total Requests 1,000,000
Unique Documents 5,549
Total Transferred Bytes 3.3 GB
Smallest Transfer Size (bytes) 4
Largest Transfer Size (bytes) 2,891,887
Median Transfer Size (bytes) 889
Mean Transfer Size (bytes) 3,498
Standard Deviation (bytes) 18,815

4.3 Experimental Design

The experiments use a multi-factor experimental design. The primary factors of interest are
scheduling policy, job size, and system load, as indicated in Figure 2.

The scheduling policies considered4 are PS and SRPT. System load is controlled by setting
the byte service rate (i.e., network link capacity) for the server. We consider probe job sizes
ranging from 1 byte to 10 MB, since this spans the typical range of Web object sizes. The largest
probe job size considered (10 MB) represents a “small” perturbation to the total load (i.e., it
increases the total transferred bytes by less than 0.3%). However, it is larger than any other
job size in the empirical workload, and depending on the probe placement, could extend the
simulated completion time slightly.

4.4 Performance Metrics

The simulation experiments use the following performance metrics:

• Number of jobs in the system: This metric is used in time series plots and in frequency
histogram plots to illustrate the behaviours of different scheduling policies.

• Number of bytes in the system: This metric is used in time series plots and in frequency
histogram plots to illustrate the behaviours of different scheduling policies. It is also used
to validate the correct operation of different scheduling policies, as discussed in Section 3.1.

• Response time: This metric is used to measure the response time for the probe job in our
sampling methodology. Response time is defined as the elapsed time from when the request
first arrives in the system until it departs from the system.

4For space reasons, this paper reports only a subset of the experiments. Full results appear in [4].
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Figure 3: Simulation Validation Results for PS and SRPT Scheduling Policies (U = 0.95)

• Slowdown: We define slowdown as the response time of a job divided by the ideal response
time if it were the sole job in the system. This metric is often referred to as normalized
response time, inflation factor, or stretch factor in the literature [6, 8]. The slowdown value
ranges from 1 to infinity. Lower values of slowdown represent better performance.

The slowdown metric is used in time series plots and in frequency histogram plots to
illustrate the behavioural properties of different scheduling policies. The mean slowdown,
where used, is the average slowdown computed across all samples.

• Coefficient of Variation (CoV) of slowdown. The CoV of slowdown indicates the variabil-
ity (or unfairness) of slowdown across jobs. In a perfectly fair environment, the CoV of
slowdown should be zero. The larger the CoV value, the higher the degree of unfairness.

4.5 Validation

Significant effort was expended on verification and validation of the results reported by our
simulator. This section briefly describes several of these steps.

The first validation step involved testing our simulator on short traces such as that in Figure 1,
for which results could be verified by hand. We verified that the busy period behaviour was
correct, and that the byte backlog process was consistent for all scheduling policies considered.

The second validation step involved comparing slowdown results reported by our simulator to
published results in the literature for the SRPT and PS policies (albeit for different traces). An
example of these simulation results is provided in Figure 3, for our workload trace. Figure 3(a)
shows job response time, while Figure 3(b) shows the slowdown metric, both plotted versus the
percentile of the job size distribution, following the format used in [2]. Our simulation results are
qualitatively consistent5 with those reported in [2], providing further confidence in the results
reported by our simulator.

The third validation step involved testing our sampling approach to ensure that it followed the
PASTA principle. The Anderson-Darling goodness of fit test was used to test for exponentiality,

5The extra “jitter” in our plots is attributed to the transfer size distribution in the World Cup trace.
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Figure 4: Illustration of Busy Period Analysis for Simulation Validation (SRPT, U = 0.95)

while autocorrelation tests were used to test for independence. Our probe generation approach
passed both tests, indicating that the system state is sampled in a Poisson fashion.

One additional validation test studied the number of busy periods, and how this number is
transformed by the insertion of the probe job. Three cases are possible:

• The probe job increases the number of busy periods by one. This case occurs if the probe
job arrives in an idle period, and is completely served within that (formerly) idle period.
The probability of this occurrence depends on the probe job size and the proportion of
time that the server is idle. Tests with infinitesimal (1 byte) probe jobs produced results
consistent with the level of system load.

• The probe job leaves the number of busy periods unchanged. This case occurs if the probe
job arrives in (or just slightly before) an existing busy period, and is serviced to completion
in that (slightly extended) busy period, without merging with the following busy period.

• The probe job reduces the number of busy periods by one or more. This case occurs if the
addition of the probe job causes two or more busy periods to coalesce. The coalescence
case is common for large probe job sizes, especially at moderate and high loads.

Analysis of the busy period behaviour in our experiments was consistent with the explanations
provided here. Figure 4 provides an example of the busy period analysis from 300 random probes,
for different probe job sizes at 95% system load. For a 1 KB probe job size, the insertion of the
probe job adds at most one busy period, and removes at most two busy periods (compared to the
initial total of 49,714 busy periods). For a 10 KB probe job size, up to 8 busy periods coalesce.
For a 100 KB probe job size, about 30 busy periods coalesce on average, while for 1 MB probe
jobs, about 300 busy periods coalesce on average.
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Figure 5: Simulation Results for PS and SRPT Scheduling Policies

5 Simulation Results

5.1 General Observations

Figure 5 illustrates the key differences between the PS and SRPT policies. The first two columns
of graphs show short (60 second) time series plots for the number of jobs simultaneously in the
system for PS and SRPT, respectively, on the empirical Web server workload trace. The third
column shows the marginal distributions (frequency histograms) of the number of jobs in the
system, based on the entire World Cup trace. The results are illustrated for three different levels
of system load: 50%, 80%, and 95%.

The top row of graphs in Figure 5 shows the results for 50% load. The time series plots
show the dynamic number of jobs in the system for each scheduling policy: PS in Figure 5(a),
and SRPT in Figure 5(b). Figure 5(c) shows the resulting marginal distributions. In this graph,
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there is little difference between the marginal distributions for PS and SRPT. Both plots start at
0.5, since the server is idle half the time (by definition of the system load), and tail off relatively
quickly after that. The visual evidence suggests that the PS policy has a longer tail to the
distribution, but it is not clear if this is statistically significant. At this modest level of load, it
is rare to have more than 10 jobs in the system, with either policy.

The second row of graphs in Figure 5 shows the results for 80% load. Again, two time series
plots are shown (PS in Figure 5(d), and SRPT in Figure 5(e)), with the marginal distribution
results in Figure 5(f). At 80% load, the differences between policies are more apparent. While
both plots start at 0.20 (corresponding to 80% load), the marginal distribution for the SRPT
policy is very “tight”, while that for the PS policy has a much longer tail. The means of the
distributions differ significantly.

These differences are even more apparent in the third row of graphs in Figure 5, for 95%
load. In Figure 5(i), the marginal distribution for SRPT is very tight; there are never more than
30 jobs in the system at a time for this workload. The marginal distribution for the PS policy
shows a much longer tail, with up to 180 jobs in the system at a time.

5.2 Refining the Notion of Unfairness

The results in Figure 5 show that the number of jobs in the system can differ a lot from one
scheduling policy to another. One implication of these results relates to “unfairness” in Web
server scheduling policies. In particular, we argue that there are two types of unfairness, which
we call endogenous unfairness and exogenous unfairness. These are defined as follows:

• Endogenous unfairness refers to unfairness caused by an intrinsic property of a job, such
as its size. The size of a given job is the same regardless of when it arrives.

• Exogenous unfairness refers to unfairness caused by external conditions, such as the number
of other jobs in the system, their sizes, and their arrival times. These external factors are
beyond the control of an arriving job.

To illustrate endogenous unfairness, we present in Figure 6 the mean and CoV of slowdown
as a function of job size. Jobs are classified by size into 200 bins, each representing one-half of
one percentile of the job size distribution [5]. These results are for 95% system load.

Figure 6(a) shows the mean slowdown results for SRPT and PS as a function of job size. For
SRPT, the largest 1-2% of job sizes experience slowdown almost 10 times worse than smaller
jobs. However, they still receive faster service under SRPT than under PS. Figure 6(b) shows
the CoV of slowdown for these two policies, again as a function of job size. Within each job
size classification, SRPT provides consistent slowdown, with very low CoV. About 99% of jobs
have lower CoV of slowdown under SRPT than under PS. Except for the largest 1% of files, the
requests in each size-based bin are more equally treated under SRPT than under PS.

Exogenous unfairness, on the other hand, arises from the dynamic arrivals and departures of
jobs in the system as a whole. Requests that arrive at busy times experience relatively longer
waiting times under PS than under SRPT. To illustrate exogenous unfairness, we plot in Figure 7
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Figure 6: Illustration of Endogenous (Size-based) Unfairness
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Figure 7: Illustration of Exogenous (Time-based) Unfairness

the mean and CoV of slowdown for SRPT and PS, with requests classified into 200 bins based
on similar arrival times. For each bin, we calculate the mean and CoV of slowdown.

Figure 7(a) shows the mean slowdown as a function of time. For PS, the mean slowdown
varies a lot, due to the random load variation. For example, jobs arriving near 300 seconds
experience slowdown 10 times worse than jobs arriving near 700 seconds. On the other hand,
the influence of load variation on SRPT is negligible.

Figure 7(b) shows the CoV of slowdown versus time. Here, the CoV of slowdown for SRPT is
higher than for PS most of the time. In other words, in any short time interval, pending requests
are more unfairly treated under SRPT than under PS.

The results in Figure 6 and Figure 7 are complementary. Together, they show that:

• SRPT has high endogenous unfairness, but low exogenous unfairness. The mean slowdown
increases with job size (Figure 6(a)), but does not vary much with time (Figure 7(a)). The
CoV of slowdown is consistently low with respect to job size in Figure 6(b), but varies a
lot with respect to job arrival time (Figure 7(b)).

13



• PS has high exogenous unfairness, but low endogenous unfairness. The mean slowdown
varies a lot with time in Figure 7(a), though it is quite consistent across job sizes (Fig-
ure 6(a)). The CoV of slowdown is high with respect to size in Figure 6(b), but relatively
consistent over short intervals of time (Figure 7(b)).

5.3 Quantifying Unfairness

Exogenous unfairness can be quantified using our sampling methodology, since it allows us to
measure the variability of response times for a particular job size, depending upon job arrival
time. By varying the probe job size, system load, and scheduling policy, we determine the
expected response time for a wide range of job sizes, quantifying endogenous unfairness.

Figure 8 provides a graphical illustration of the slowdown results observed for different probe
job sizes. Each graph in this figure shows the marginal distribution of the slowdown metric
observed from 3000 random placements of the probe job in the empirical Web server workload
request stream. Note that all graphs use a logarithmic scale on the horizontal axis. These
simulation results are for 95% system load. Table 2 summarizes the results for three loads.

Figure 8(a) shows the results for a small probe job of size 100 bytes. For this probe job size,
there is a dramatic difference between the slowdown results for the PS and SRPT scheduling
policies. For the SRPT policy, the marginal distribution is highly concentrated near 1.0, the
optimal value. For the PS policy, the slowdown values span a wide range, up to 150.

Figure 8(b) shows the results for a 1 KB probe job size. Similar observations apply here: the
SRPT policy consistently gives slowdown values below 3, while the PS policy exhibits slowdowns
as large as 150. Clearly, exogenous unfairness is dominant for PS, but not SRPT. Furthermore,
the exogenous unfairness of PS increases with system load (see Table 2).

As the size of the probe job is increased, the differences between the two marginal distributions
are less pronounced. For example, Figure 8(d) shows the simulation results for a probe job size
of 100 KB. Here, the two marginal distributions partially overlap. According to a t-test, the
means of the two distributions are statistically different (15.59 for SRPT versus 27.11 for PS),
at the 0.05 level of significance (see Table 2). Under the PS policy, the mean slowdown is
approximately the same for all probe job sizes (as expected). However, the variance of slowdown
is a decreasing function of job size. For SRPT, the mean slowdown with SRPT clearly depends
on job size. Furthermore, the variance of slowdown peaks at intermediate job sizes (e.g., 100
KB); the variance is lower both for smaller jobs and for larger jobs. In other words, endogenous
unfairness is dominant for SRPT; its effect is also more pronounced at higher load (see Table 2).

Figure 8(e) presents results for a probe job size of 1 MB. Here, the two distributions overlap
significantly, though the SRPT policy still has a shorter tail, compared to PS. The means of the
distributions still differ statistically.

Finally, Figure 8(f) presents results for a 10 MB probe job. At this job size, there is no
statistical difference between the means of the two distributions. In fact, the distributions are
almost visually identical. This graphical result supports the claim in [6] about the asymptotic
convergence of scheduling policies with respect to slowdown.
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Figure 8: Sampled Marginal Distributions of Slowdown for PS and SRPT Scheduling, for Differ-
ent Probe Job Sizes (U = 0.95)
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Table 2: Statistical Results for Slowdown

System Probe PS Policy SRPT Policy Statistical Better
Load Job Size Mean Var Mean Var Difference? Policy

U = 0.50 J = 1 KB 2.06 2.42 1.05 0.03 Yes SRPT
U = 0.50 J = 10 KB 2.07 2.13 1.23 0.11 Yes SRPT
U = 0.50 J = 100 KB 2.06 1.17 1.85 0.88 Yes SRPT
U = 0.50 J = 1 MB 2.04 0.31 1.94 0.16 Yes SRPT
U = 0.50 J = 10 MB 2.01 0.04 2.00 0.04 No -
U = 0.80 J = 1 KB 5.61 28.87 1.09 0.05 Yes SRPT
U = 0.80 J = 10 KB 5.63 27.71 1.45 0.28 Yes SRPT
U = 0.80 J = 100 KB 5.44 18.87 4.54 17.62 Yes SRPT
U = 0.80 J = 1 MB 5.18 5.88 4.55 3.16 Yes SRPT
U = 0.80 J = 10 MB 5.11 1.36 5.07 1.34 No -
U = 0.95 J = 1 KB 27.16 844.19 1.11 0.07 Yes SRPT
U = 0.95 J = 10 KB 27.22 828.06 1.58 0.40 Yes SRPT
U = 0.95 J = 100 KB 27.11 801.18 15.59 391.71 Yes SRPT
U = 0.95 J = 1 MB 26.01 582.09 15.06 130.53 Yes SRPT
U = 0.95 J = 10 MB 21.32 94.39 21.77 115.32 No -

5.4 The Crossover Effect

Harchol-Balter et al. [6] state (and prove) an intriguing theoretical claim: while the asymptotic
slowdown results for the largest jobs are the same for any scheduling policy, there is a class of
(slightly smaller) large jobs for which SRPT is worse in terms of slowdown, by a factor 1 + ε,
for small ε > 0. However, their paper provides no concrete information on exactly where this
“crossover” effect occurs (i.e., what job size range). As a final step in this paper, we apply our
sampling methodology in an attempt to find this region, for our empirical workload.

Figure 9 shows our simulation results. These experiments present results for probe job sizes
ranging from 3 KB to 10 MB, with system loads ranging from 50% to 95%. For 50% load (first
column of graphs in Figure 9) and 80% load (second column of graphs in Figure 9), no crossover
effect is evident, for any of the probe job sizes considered. For 95% load (third column of graphs
in Figure 9), a slight crossover effect appears in Figure 9(i). For this graph, the probe job size is
3 MB, and the system load is 95%.

To further explore this phenomenon, Figure 10 and Table 3 present more detailed simulation
results. For our particular workload trace, at system load above 95%, we have found that probe
jobs in the range6 of 2.5-4 MB are in the “crossover” region. For example, Figure 10(a) and (b)
show the results for a probe job of size 3 MB. For clarity of presentation, Figure 10(a) uses a
linear horizontal scale, while Figure 10(b) uses a logarithmic scale. Figure 10(c) and (d) show

6The location of the crossover is also consistent with Figure 6(b), which shows the largest 2% of jobs in SRPT
have higher CoV of slowdown than under PS.
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Figure 9: Simulation Results Searching for the SRPT “Crossover Effect”
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Table 3: Statistical Results for Slowdown (U = 0.95)

Probe PS Policy SRPT Policy Statistical Better
Job Size Mean Var Mean Var Difference? Policy

J = 1 MB 26.01 582.09 15.06 130.53 Yes SRPT
J = 2 MB 25.24 481.32 18.86 164.65 Yes SRPT

J = 2.5 MB 24.71 422.61 26.38 671.76 Yes PS
J = 3 MB 24.16 366.74 25.92 504.08 Yes PS

J = 3.5 MB 23.62 312.41 25.13 428.22 Yes PS
J = 4 MB 23.30 268.19 24.79 371.34 Yes PS
J = 5 MB 22.38 216.65 22.86 274.84 No -
J = 10 MB 21.32 94.39 21.77 115.32 No -

the results for a probe job of size 3.5 MB, while Figure 10(e) and (f) show the results for a 4 MB
probe job. In all three pairs of plots, the SRPT results show slightly longer tail behaviour than
the PS results. This difference, though small, is enough to skew the mean of the distribution,
leading to the crossover effect. The differences in means between SRPT and PS are statistically
significant (t-test, 0.05 level of significance). Table 3 summarizes these results.

In summary, our probe-based sampling approach has provided independent verification of the
“crossover effect” established theoretically in [6]. Furthermore, our results have quantified its
practical range for an empirical Web server workload.

6 Summary and Conclusions

This paper describes a probe-based sampling methodology for estimating the mean and variance
of job response time for Web server scheduling strategies. The approach is general-purpose, in
that it can be applied for any arrival process, service time distribution, and scheduling policy.
We used the approach to illustrate the asymptotic convergence of slowdown for the largest jobs,
providing independent confirmation of previous theoretical results [6]. We also illustrated the
existence of the “crossover effect” for some job sizes under SRPT scheduling, again confirming
prior theoretical results [6]. Finally, we have quantified aspects of SRPT performance “in prac-
tice” for typical job sizes, refining the notion of unfairness (endogenous versus exogenous), and
identifying the range of job sizes for which the crossover effect is evident on an empirical Web
server workload.

We believe that our simulation-based approach is complementary to the theoretical and ex-
perimental work in the literature on SRPT. We hope that our results provide further insight into
unfairness, increasing the “comfort level” associated with SRPT scheduling, and encouraging its
deployment in Internet Web servers.
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Figure 10: Detailed Simulation Results Illustrating the “Crossover Effect” for 3-4 MB Probe
Jobs (U = 0.95)
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