
Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009

Nikos Hardavellas1, Michael Ferdman1,2, Babak Falsafi1,2 and Anastasia Ailamaki3,1

R-NUCA: Data Placement in Distributed Shared Caches

1Computer Architecture Lab (CALCM), Carnegie Mellon University, Pittsburgh, PA, USA
2Parallel Systems Architecture Lab (PARSA), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

3École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Abstract
Increases in on-chip communication delay and the large working
sets of commercial and scientific workloads complicate the design
of the on-chip last-level cache for multicore processors. The large
working sets favor a shared cache design that maximizes the
aggregate cache capacity and minimizes off-chip memory requests.
At the same time, the growing on-chip communication delay favors
core-private caches that replicate data to minimize delays on
global wires. Recent hybrid proposals offer lower average latency
than conventional designs. However, they either address the
placement requirements of only a subset of the data accessed by
the application, require complicated lookup and coherence
mechanisms that increase latency, or fail to scale to high core
counts.

In this work, we observe that the cache access patterns of a range
of server and scientific workloads can be classified into distinct
categories, where each class is amenable to different data
placement policies. Based on this observation, we propose
Reactive NUCA (R-NUCA), a distributed shared cache design
which reacts to the class of each cache access and places blocks at
the appropriate location in the cache. Our design cooperates with
the operating system to support intelligent placement, migration,
and replication without the overhead of an explicit coherence
mechanism for the on-chip last-level cache. We evaluate R-NUCA
on a range of server, scientific and multi-programmed workloads
and find that its performance matches the best alternative design,
providing a speedup of 17% on average against the competing
alternative, and up to 26% at best.

1 Introduction
In recent years, processor manufacturers have shifted towards pro-
ducing multicore processors to remain within the power and cool-
ing constraints of modern chips while maintaining the expected
performance advances with each new processor generation.
Increasing device density enables exponentially more cores on a
single die. Major manufacturers already ship 8-core chip multipro-
cessors [25] with plans to scale to 100s of cores [1, 32], while spe-
cialized vendors already push the envelope further (e.g., Cisco’s
CRS-1 with 192 Tensilica network-processing cores, Azul’s Vega 3
with 54 out-of-order cores). The exponential increase in the num-
ber of cores results in the commensurate increase in the on-chip
cache size required to supply these cores with data. Physical and
manufacturing considerations suggest that future processors will be
tiled, where groups of processor cores and banks of on-chip cache
will be physically distributed throughout the chip area [1,43]. Tiled

architectures give rise to varying access latencies between the
cores and the cache slices spread around the die, naturally leading
to a Non-Uniform Cache Access (NUCA) organization of the on-
chip last-level cache (LLC), where the latency of a cache hit
depends on the physical distance between the requesting core and
the location of the cached data.
However, growing cache capacity comes at the cost of access
latency. As a result, modern workloads already spend most of their
execution time on on-chip cache accesses. Recent research shows
that server workloads lose as much as half of the potential perfor-
mance due to the high latency of on-chip cache hits [20]. Although
increasing device switching speeds result in faster cache-bank
access times, communication delay remains constant across tech-
nologies [8], and access latency of far away cache slices becomes
dominated by wire delays and on-chip communication [24]. Thus,
from an access-latency perspective, an LLC organization where
each core treats a nearby LLC slice as a private cache is desirable.
While a private distributed LLC organization results in fast local
hits, it requires area-intensive, slow and complex mechanisms to
guarantee coherence. In turn, coherence mechanisms reduce the
available cache area and penalize data sharing, which is prevalent
in many multicore workloads [3,20]. At the same time, growing
application working sets render private caching schemes impracti-
cal due inefficient use of cache capacity, as cache blocks are repli-
cated between private cache slices and waste space. At the other
extreme, a shared distributed LLC organization where blocks are
statically address-interleaved in the aggregate cache offers maxi-
mum capacity by ensuring that no two cache frames are used to
store the same block. Because static interleaving defines a single,
fixed location for each block, a shared distributed LLC does not
require a coherence mechanism, enabling a simple LLC design and
allowing for larger aggregate cache capacity. However, static inter-
leaving results in a random distribution of cache blocks across the
L2 slices, leading to frequent accesses to distant cache slices and
high access latency.
An ideal LLC organization enables the fast access times of the pri-
vate LLC and the design simplicity and large capacity of the shared
LLC. Recent research advocates hybrid and adaptive designs to
bridge the gap between private and shared organizations. However,
prior proposals require complex, area-intensive, and high-latency
lookup and coherence mechanisms [4, 10, 7, 43], waste cache
capacity [4, 43], do not scale to high core counts [7, 19], or opti-
mize only for a subset of cache accesses [4, 7, 11].
In this paper we propose Reactive NUCA (R-NUCA), a scalable,
low-overhead and low-complexity cache architecture that opti-
mizes data placement for all cache accesses, while at the same time

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
attaining the fast local access of the private organization and the
large aggregate capacity of the shared scheme.
R-NUCA cooperates with the operating system to classify accesses
at the page granularity, achieving negligible hardware overhead
and avoiding complex heuristics that are prone to error, oscillation,
or slow convergence [4, 10, 7]. The placement decisions in R-
NUCA guarantee that each modifiable block is mapped to a single
location in the aggregate cache, thereby obviating the need for
complex, area- and power-intensive coherence mechanisms that
are commonplace in other proposals [7, 4, 10, 43]. At the same
time, R-NUCA allows read-only blocks to be shared by neighbor-
ing cores and replicated at distant ones, ensuring low access
latency for surrounding cores while balancing capacity constraints.
In the process of doing so, R-NUCA utilizes rotational interleav-
ing, a novel lookup mechanism that matches the fast speed of
address-interleaved lookup without pinning the block to a single
location in the cache, thereby allowing the block’s replication
while avoiding expensive lookup operations [43, 10].
More specifically, in this paper we make the following contribu-
tions:
• Through execution trace analysis, we show that cache

accesses for instructions, private data, and shared data exhibit
distinct characteristics leading to different replication, migra-
tion, and placement policies.

• We leverage the characteristics of each access class to design
R-NUCA, a novel, low-overhead, low-latency mechanism for
data placement in the NUCA cache of large-scale multicore
chips.

• We propose rotational interleaving, a novel mechanism to
allow fast lookup of nearest-neighbor caches, eliminating
multiple cache probes and allowing replication without
wasted space and without coherence overheads.

• We use full-system cycle-accurate simulation of multicore
systems to evaluate R-NUCA and find that its performance
always exceeds the best of private or shared design for each
workload, attaining a speedup of 20% on average against the
competing alternative when running server workloads (17%
on average when including scientific and multi-programmed
workloads) and up to 26% speedup at best.

The rest of this paper is organized as follows. Section 2 presents
background on distributed caches and tiled architectures, and pro-
vides insight into the data-access patterns of modern workloads.
Section 3 presents our classification and offers a detailed empirical
analysis of the cache-access classes of commercial, scientific, and
multi-programmed workloads. We detail the R-NUCA design in
Section 4 and evaluate it in Section 5 using cycle-accurate full-sys-
tem simulation. We summarize prior work in this area in Section 6
and conclude in Section 7.
While our techniques are applicable to any last-level cache, we
assume a 2-level cache hierarchy in our evaluation. Thus, in the
interest of clarity, we refer to our last-level cache as L2 in the
remainder of this work.

2 Background
2.1 Non-Uniform Cache Architectures
Growing wire delays have necessitated a departure from conven-
tional cache architectures that present each core with a uniform
cache access latency. The exponential increase in cache sizes

required for multicore processors renders caches with uniform
access impractical, as increases in capacity simultaneously
increase access latency [20]. To mitigate this problem, recent
research [24] proposes to decompose the cache into multiple slices.
Each slice may consist of multiple cache banks to optimize for low
access latency [5], with all slices physically distributed across the
entire chip. Thus, cores realize fast accesses to the cache slices in
their physical proximity and slower accesses to physically remote
slices.
Just as cache slices are distributed across the entire die, processor
cores are similarly distributed. Thus, it is natural to couple cores
and cache slices together and allow each core to have a “local”
slice that affords fast access. Furthermore, economic, manufactur-
ing, and physical design considerations [1, 43] suggest “tiled”
architectures that co-locate distributed cores with distributed cache
slices in tiles communicating via an on-chip interconnect.

2.2 Tiled architectures
Figure 1 presents a typical tiled architecture. Multiple tiles, each
comprising a processor core, caches, and network router/switch,
are replicated to fill the die area. Each tile includes private L1 data
and instruction caches and an L2 cache slice. L1 cache misses
probe the on-chip L2 caches via an on-chip network that intercon-
nects the tiles (typically a 2D mesh). Depending on the L2 organi-
zation, the L2 slice can be either a private L2 cache or a portion of
a larger distributed shared L2 cache. Also depending on the cache
architecture, the tile may include structures to support cache coher-
ence such as L1 duplicate tags [2] or sections of the L2-cache dis-
tributed directory.
Tiled architectures scale well to large processor counts, with a
number of commercial implementations already in existence (e.g.,
Tilera’s Tile64, Intel’s Teraflops Research Chip). Tiled architec-
tures are attractive from a design and manufacturing perspective,
enabling developers to concentrate on the design of a single tile
and then replicate it across the die [1]. Moreover, tiled architectures
are beneficial from an economic standpoint, as they can easily sup-
port families of products with varying number of tiles and power/
cooling requirements.
Private L2 organization. Each tile’s L2 slice serves as a private
second-level cache for the tile’s core. On an L1 cache miss, only
the L2 slice located in the same tile is probed. On a read miss in the
local L2 slice, the coherence mechanism (a network broadcast or

FIGURE 1. Typical tiled architecture. Each tile contains
a core, L1 instruction and data caches, and a shared-L2
cache slice, interconnected into a 2-D folded torus.

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P6 Tile
CORE

I$ D$

L2 slice
2

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
access to a statistically address-interleaved distributed directory)
confirms that a copy of the block is not present on chip. On a write
miss, the coherence mechanism invalidates all other on-chip cop-
ies. With a directory-based coherence mechanism, a typical coher-
ence request is performed in three network hops. With token-
coherence [27], a broadcast must be performed and a response
must be received from the farthest tile.
Enforcing coherence requires large storage or complexity over-
heads. For example, a full-map directory for a 16-tile multicore
processor with 1MB per L2 slice and 64-byte blocks requires 256K
entries. Assuming a 42-bit physical address space, the directory
size per tile is 1.3MB, exceeding the L2 capacity of the slice. Thus,
full-map directories are impractical for the private L2 organization.
Limited-directory mechanisms use smaller directories, but require
complex, slow, and non-scalable fall-back mechanisms such as
full-chip broadcast. In the rest of this work, we optimistically
assume a private L2 organization where each tile has a full-map
directory with zero area overhead.
Shared L2 organization. Each L2 slice is statically dedicated to
caching a part of the address space, servicing requesting from any
tile through the interconnect. On an L1 cache miss, the miss
address dictates the tile responsible for caching the block, and a
request is sent directly to that tile. The target tile stores both the
cache block and its coherence state. Because each block has a
unique location in the aggregate L2 cache, the coherence state must
cover only the L1 cache tags; following the example for the private
L2 organization and assuming 64KB split I/D L1 caches per core,
the directory size is 168KB per tile.

2.3 Requirements for Intelligent Cache Block
Placement
While the private and shared L2 organizations present two
extremes in the design space, the latency characteristics of the dis-
tributed cache allow hybrid designs to strike a balance between
these organizations. A distributed cache presents a range of laten-
cies to a core, from fast access to slices near the core, to several
times slower access to slices at the opposite side of the die. Intelli-

gent cache block placement can improve performance by bringing
data close to the requesting cores, allowing fast access.
We identify three key requirements to enable high performance
operation of distributed NUCA caches through intelligent block
placement. First, the address of a block must be decoupled from its
physical location, enabling to store the block at a location indepen-
dent of its address [9]. Placement of blocks in physical proximity
of the requesting core allows fast access to these blocks; however,
decoupling the physical location from the block address compli-
cates searching for the block on each access. Thus, the second
requirement for intelligent data placement is an effective cache
lookup mechanism, capable of quickly and efficiently locating the
cached block. Finally, intelligent data placement must optimize for
all accesses prevalent in the workload. Different placement policies
lend themselves to some access classes while penalizing others
[44]. To achieve high performance, an intelligent placement algo-
rithm must react appropriately to each access class.

3 Characterization of L2 References
3.1 Methodology
We analyze cache access patterns using trace-based and cycle-
accurate full-system simulation of a chip multiprocessor (CMP)
using FLEXUS [39]. FLEXUS models the SPARC v9 ISA and can
execute unmodified commercial applications and operating sys-
tems. FLEXUS extends the Virtutech Simics functional simulator
with models of processing tiles with out-of-order and in-order
cores, NUCA cache, on-chip protocol controllers, and on-chip
interconnect. We model a tiled CMP architecture summarized in
Table 1 (left), running the Solaris 8 operating system and executing
workloads shown in Table 1 (right).
Future server workloads are likely to run on CMPs with a large
number of small in-order cores [14] while multi-programmed desk-
top workloads are likely to run on CMPs with a small number of
large out-of-order cores [7], allowing for more cache on chip. We
run our multi-programmed mix on an 8-core tiled CMP with out-

CMP Size 16-core for server and scientific workloads
8-core for multi-programmed workloads

Processing Cores UltraSPARC III ISA; 2GHz 8-stage pipeline
4-wide dispatch / retirement
32-entry conventional store buffer
16-core CMP: in-order cores
8-core CMP: OoO cores, 96-entry ROB, LSQ

L1 Caches Split I/D, 64KB 2-way, 2-cycle load-to-use
3 ports, 32 MSHRs, 16-entry victim cache

L2 NUCA Cache 16-core CMP: 1MB / core, 14-cycle hit latency
8-core CMP: 3MB / core, 25-cycle hit latency
16-way set-associative, 64-byte lines
1 port, 32 MSHRs, 16-entry victim cache

Main Memory 3 GB total memory, 45 ns access latency
Memory Controller one per 4 cores, round-robin page interleaving

Interconnect 2D torus (4x4 for 16-core CMP, 4x2 for 8-core)
32-byte links, 1-cycle link latency
2-cycle router latency

Online Transaction Processing (TPC-C)
DB2 100 warehouses (10 GB), 64 clients, 450 MB buffer pool

Oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA
Web Server (SPECweb)

Apache 16K connections, fastCGI, worker threading model
Decision Support (TPC-H)

Qry 8 DB2, 450 MB buffer pool, 1GB database
Scientific

em3d 768K nodes, degree 2, span 5, 15% remote
Multi-programmed (SPEC CPU2000)

MIX 2 copies from each of gcc, twolf, mcf, art; reference input

TABLE 1. System and application parameters for 16-core in-order and 8-core out-of-order CMPs.
3

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
of-order cores, and the rest of our workloads on a 16-core tiled
CMP with in-order cores.
To estimate the L2 cache size for each configuration, we assume a
die size of 210mm2 using 45nm technology and estimate the sizes
of each component on chip following ITRS guidelines [33]. We
allocate one memory controller per 4 tiles. We account for the area
occupancy of the various system-on-chip components and allocate
65% and 75% of the chip area [14] for the processors and the
NUCA cache in our 16-core and 8-core CMP respectively, taking
into account that the larger-scale CMP requires more components
(e.g., more memory controllers and a larger network). We estimate
the area of the out-of-order and in-order cores by scaling the micro-
graphs of the IBM Power5 and Sun UltraSparcT1 processors, using
1MB of L2 cache per core for the 16-core CMP and 3MB of L2 per
core for the 8-core CMP.
Table 1 (right) enumerates our commercial and scientific applica-
tion suite. We include the TPC-C v3.0 OLTP workload on IBM
DB2 v8 ESE and Oracle 10g Enterprise Database Server. We run
one query from the TPC-H DSS workload on DB2. We evaluate
web server performance with the SPECweb99 benchmark on
Apache HTTP Server v2.0 and Zeus Web Server v4.3. We drive the
web servers using a separate client system (client activity is not
included in timing results). We run one multi-programmed work-
load composed of SPEC CPU2000 applications running the refer-
ence input. Finally, we include one scientific application as a frame
of reference for our server workload results.
With one exception, we focus our study on the workloads
described in Table 1. To show the wide applicability of our L2 ref-
erence clustering observations, Figure 2 includes statistics gathered
using a larger number of server workloads (OLTP on DB2 and Ora-
cle, SPECweb99 on Apache and Zeus, TPC-H queries 6, 8, 11, 13,
16, and 20 on DB2), scientific workloads (em3d, moldyn, ocean,
sparse), and the multi-programmed workload from Table 1.

3.2 Categorization of Cache Accesses
We analyze the L2 memory accesses at the granularity of a single
cache block along two axes: the number of cores sharing the block
and the percentage of read-write blocks. We plot the results in
Figure 2. For every workload, we plot two bubbles for each num-
ber of sharers (1-16), one bubble for instruction and another for
data accesses. The bubble size corresponds to the relative fre-
quency of the accesses for that workload. We indicate instruction-

access bubbles in black and data-access bubbles in white (shared)
or green (private), drawing a distinction for private blocks
(accessed by only one core).
We observe that, in server workloads, L2 references naturally form
three clusters with distinct characteristics: (1) instructions are
shared by all cores and are entirely read-only, (2) shared data are
generally read-write and shared among all cores, (3) private data
exhibit a varying degree of read-write blocks. We further observe
that scientific and multi-programmed workloads mostly access pri-
vate data, with a small fraction of shared accesses in data-parallel
scientific codes exhibiting producer-consumer or nearest-neighbor
communication. The instruction footprints of scientific and multi-
programmed workloads are effectively captured by the L1-I cache.
We present the normalized breakdown of L2 references in Figure 3.
Although server workloads are dominated by accesses to instruc-
tions and shared read-write data, a significant fraction of L2 refer-
ences are to private blocks. The scientific and multi-programmed
workloads are dominated by accesses to private data, but also
exhibit shared data accesses. With the exception of the multi-pro-
grammed workload (SPEC CPU2000), our workloads underscore
the need to react to the access class when implementing the L2
placement scheme, and emphasize the opportunity loss of address-
ing only some of the access classes.

FIGURE 2. L2 Reference Clustering. Categorization of references to L2 blocks with respect the blocks’ number of sharers,
read-write behavior and instruction or data access class.

(a) Server Workloads (b) Scientific and multi-programmed Workloads

-20%
0%

20%
40%
60%
80%

100%
120%

0 2 4 6 8 10 12 14 16 18 20
Number of Sharers

%
 R

ea
d-

W
rit

e
B

lo
ck

s
Instructions Data-Private Data-Shared

%L2 Refs

0 -20%
0%

20%
40%
60%
80%

100%
120%

-4 -2 0 2 4 6 8 10 12 14 16 18 20
Number of Sharers

%
 R

ea
d-

W
rit

e
B

lo
ck

s

Instructions Data-Private Data-Shared
I t ti D t P i t D t Sh d

%L2 Refs

0%
0

FIGURE 3. L2 Reference breakdown. Distribution of L2
references by access class.

0%

20%

40%

60%

80%

100%

OLTP
DB2

OLTP
Oracle

Apache DSS
Qry8

em3d MIX

N
or

m
al

iz
ed

 L
2

R
ef

er
en

ce
s

Instructions Data-Private Data-Shared-RW Data-Shared-RO
4

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
The categorization axes of Figure 2 suggest an appropriate L2
placement scheme for each access class. Blocks accessed by a sin-
gle core (private data) are prime candidates for allocation at the
requesting core; placement at the requesting tile achieves lowest
possible access latency, avoiding the need for coherence because
private blocks are always read or written by the same core. Read-
only and universally shared blocks (e.g., instructions) are prime
candidates for replication on chip; replication allows locating
blocks in close proximity to the requesting core, while their read-
only nature does not require coherence. Finally, read-write blocks
with many sharers (shared data) may benefit from migration or rep-
lication if the shared data blocks exhibit reuse by one or a group of
cores. However, migration requires complex lookup mechanisms
and replication requires coherence enforcement, underscoring the
need for an intelligent mechanism to find an appropriate location
for the block on chip.

3.3 Characterization of Access Classes
3.3.1 Private Data
Accesses to private data, such as stack space and thread-local stor-
age, are characterized by always being initiated from the same pro-
cessor core. Because requests are always initiated by the same
core, replicating private data to make them available at multiple
locations on chip only leads to wasted cache capacity [42]. There-
fore, despite private data comprising read-only and read-write
blocks, a cache coherence mechanism is not necessary, leading to a
single placement goal for private data: to be cached at a slice close
to the requestor, so that private data references may be satisfied
with minimal latency.1 The R-NUCA placement policy satisfies
the private-data placement goal by always placing private data into
the L2 slice within the same tile as the requesting core.
We analyze the private-data working sets of our workloads in
Figure 4 (left). Although the private-data working set for OLTP
and multi-programmed workloads may fit into a single (local) L2
slice, DSS workloads scan multi-gigabyte database tables and sci-
entific workloads operate on large data sets, making their private-

data working sets exceed any reasonable L2 capacity. To accom-
modate large private working sets, prior proposals advocate
migrating (spilling) these blocks to neighbors [11]. Although spill-
ing may be applicable to some multi-programmed workloads com-
posed of applications with a range of private-data working sets, it is
inapplicable to server or scientific workloads. All cores in a typical
server or balanced scientific workload run similar threads, with
each L2 slice having similar capacity pressure. Migrating private
data blocks to a neighboring slice to relieve cache pressure on the
local slice is offset by the neighboring slices undergoing an identi-
cal operation and spilling blocks in the opposite direction. As a
result, cache pressure remains the same, but private data references
incur greater access latency.

3.3.2 Instructions
Instruction blocks are typically written once when the operating
system loads an application binary or shared library into memory
from disk. Once in memory, instruction blocks remain read-only
for the duration of execution. Figure 2 indicates an important char-
acteristic of instruction blocks in server workloads: instruction
blocks are universally shared among the processor cores. All cores
in server workloads typically exercise the same instruction work-
ing set, with all cores requiring low-latency access to the instruc-
tion blocks with equal probability. Instruction blocks are therefore
amenable to replication. By caching multiple copies of the blocks,
replication enables low-latency access to the instruction blocks
from multiple locations on chip.
In addition to replication, in Figure 5 (left) we examine the utility
of instruction-block migration toward a requesting core. We
present the percentage of all L2 references constituting the 1st,
2nd, and subsequent instruction-block accesses by a single core
without intervening L2 accesses for the same block by a different
core. Thus, the grey and higher portions of the bars represent reuse
accesses that could experience a lower access latency if the instruc-
tion block was migrated toward the requesting core after the first
access. Based on these results, we observe that accesses to L2
instruction blocks are finely interleaved between participating
sharers, yielding minimal potential benefit in migration of instruc-
tion blocks. On the contrary, allowing for migration may be detri-
mental to performance, as migration may increase contention in the
on-chip network.
A potential down-side to instruction-block replication arises due to
excessive replication. Replication leads to a reduction of aggregate

1. In some situations, the operating system may migrate a thread from
one core to another, with all subsequent accesses to the thread’s private
data being initiated by the destination core. In these cases, coherence
can be preserved, by the operating system, through shoot-down of the
private blocks at the time of thread migration.

FIGURE 4. L2 working set sizes. CDF of L2 references to private data, instructions, and shared data vs. the footprint of each
access class (in log-scale). References are normalized to total L2 references for each workload.

0%

20%

40%

60%

80%

100%

10 10
0

1,0
00

10
,00

0

10
0,0

00

1,0
00

,00
0

Private Data (KB)

N
or

m
al

iz
ed

 L
2

R
ef

er
en

ce
s

(C
D

F) OLTP DB2

OLTP Oracle

Apache

DSS Qry8

em3d

MIX

0%

20%

40%

60%

80%

100%

10 10
0

1,0
00

10
,00

0

10
0,0

00

1,0
00

,00
0

Instructions (KB)
N

or
m

al
iz

ed
 L

2
R

ef
er

en
ce

s
(C

D
F) OLTP DB2

OLTP Oracle

Apache

DSS Qry8

em3d

MIX

0%

20%

40%

60%

80%

100%

10 10
0

1,0
00

10
,00

0

10
0,0

00

1,0
00

,00
0

Shared Data (KB)

N
or

m
al

iz
ed

 L
2

R
ef

er
en

ce
s

(C
D

F) OLTP DB2

OLTP Oracle

Apache

DSS Qry8

em3d

MIX
5

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
L2 capacity because the same block simultaneously occupies mul-
tiple frames in the cache, leading to a higher aggregate off-chip
miss rate. Additionally, careful placement of replicas is required to
avoid caching multiple copies of a block in L2 slices at close phys-
ical proximity to each other; for example, there is virtually no
access latency benefit to caching the same instruction block in two
adjacent L2 slices.
Figure 4 (middle) shows that the instruction working set of some
server workloads exceeds the size of a single L2 slice (e.g., OLTP
on Oracle has a working set of 1.2MB). Indiscriminately replicat-
ing instruction blocks for these workloads in every L2 slice causes
excessive cache pressure; even in case the instruction working set
fits into an L2 slice, the instruction blocks strongly compete for
cache capacity with data blocks. We therefore conclude that
instruction blocks benefit most from a placement policy that
divides the L2 into clusters of neighboring slices, replicating
instructions at the granularity of a cluster rather than individual L2
slices. While the applications’ instruction working set is too large
to be cached in individual L2 slices, the working set fits into the
aggregate capacity of a cluster. Each slice participating in a cluster
of size n should store 1/n of the instruction working set. By control-
ling the cluster size, it becomes possible to smoothly trade off
instruction-block access latency for cache capacity; whereas a
large number of small clusters will offer minimal access latency
while consuming a large fraction of capacity of each participating
slice, a small number of large clusters will result in larger average
access latency but fewer overall replicas.
We find that for the workloads we study in our CMP configura-
tions, a cluster of size 4 is sufficient for replicating instruction
blocks. By each caching a quarter of the instruction working set,
clusters of 4 neighboring slices ensure that instruction blocks are at
most one network hop away from the requesting core.

3.3.3 Shared Data
Shared data comprises predominantly read-write data blocks, con-
taining both data and synchronization or locking mechanisms to
protect that data. Replication or migration of shared blocks can
provide low-latency access for the subsequent references to the
same block from the local or nearby cores. However, both replica-
tion and migration of read-write blocks require complex coherence
mechanisms to invalidate the replicated or migrating L2 blocks on
every write to the data. Figure 5 (right) shows the count of accesses
to a shared data block by the same core after a write by a different
core (writes by the same core hit in the L1-D cache and are not vis-
ible at the L2). We observe that, for shared data, half of the
accesses are the “1st access” after a write, and the vast majority of
accesses are either the “1st access” or “2nd access” after a write.
We therefore conclude that an invalidation will occur nearly after
every replication or migration opportunity, eliminating the possi-
bility of accessing the block at its new location in most cases, and
rendering both techniques ineffective. Furthermore, due to frequent
invalidations, replication of shared blocks reduces the effective
aggregate cache capacity not only due to storage of live replicas,
but also due to storage of a large number of invalidated frames.
While the shared data access-pattern characteristics shown in
Figure 5 (right) and the large working set size shown in Figure 4
(right) indicate minimal opportunity for replication or migration of
shared data, the implementation complexity and overheads of these
mechanisms entirely overshadow their potential benefit. Although

in our discussion of the benefits of replication and migration we
assume the existence of a fast lookup mechanism, to date there
have been only few promising directions discovered in this domain
[31]. To support read-write blocks at arbitrary locations on chip,
either directory-based or broadcast-based coherence mechanism
must be implemented. The area costs of a directory-based L2
coherence scheme were estimated in Section 2.2, showing that a
directory-based scheme imposes large area overheads that drasti-
cally reduce the on-chip area dedicated to L2 capacity, while the
bandwidth and power overheads of a broadcast-based mechanism
that probes multiple cache slices per access do not scale well even
up to 16 slices.
Handling of shared read-write data in a NUCA cache presents a
challenging problem due to the coherence requirements, diverse
access patterns, and large working set of these data. The challenge
has been recognized by prior studies in NUCA architectures, how-
ever the problem remained largely unaddressed, with the best pro-
posals completely ignoring shared read-write blocks [4] or
ignoring them once the adverse behavior of shared read-write
blocks is detected [10].
On the other hand, we find that shared data can be directly handled
by placing them at a fixed location in the cache. Because shared
data blocks in server workloads are universally accessed (Figure 2)
and the next sharer is not known a priori [35], every core accessing
the shared block has the same likelihood to be the next accessor,
and the average latency to access shared data in L2 remains the
same, no matter in which L2 slice these blocks reside. We deter-
mine the placement of shared cache blocks by static address inter-
leaving over the entire aggregate L2. Placing these blocks at their
appropriate address-interleaved location allows us to define a sin-
gle, fixed location for each block, utilize a trivial and fast lookup
mechanism (the address bits uniquely determine the location),
forego coherence among the L2 slices, and eliminate wasted space.
Sharers request such blocks through the interconnection network,
and they are allowed to cache them at their local L1 cache but not
their local L2 slice. Because the latency to access shared data
depends on the network topology, accesses to statically placed
shared data benefit most from a topology that avoids hot spots and
affords best-case (average) read and write latency for all cores
(e.g., a torus interconnect).

FIGURE 5. Instruction and shared data reuse. Reuse of
instructions and shared data by the same core. References
are normalized to total L2 references for each workload.

0%

20%

40%

60%

80%

100%

O
LT

P
 D

B2

O
LT

P
O

ra
cl

e

Ap
ac

he

D
S

S
Q

ry
8

em
3d M
IX

O
LT

P
D

B2

O
LT

P
O

ra
cl

e

Ap
ac

he

D
SS

 Q
ry

8

em
3d M
IX

Instructions Shared Data

No
rm

al
iz

ed
 L

2
R

ef
er

en
ce

s

1st access 2nd access 3rd-4th access 5th-8th access 9+ access
6

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
3.4 Characterization Conclusions
In Section 4 we present the necessary mechanisms to support Reac-
tive NUCA, a low complexity mechanism to achieve low-latency
access in NUCA caches. Based on the characterization of private-
data, instruction, and shared-data access patterns, we summarize
the conclusions which motivate and guide the R-NUCA design:
• An intelligent placement policy is sufficient to achieve low

access-latency for the major access classes
• L2 hardware coherence mechanisms in a tiled CMP architec-

ture are unnecessary and should be avoided
• Private blocks should be placed into the local slice of the

requesting core
• Instruction blocks should be replicated in non-overlapping

clusters (groups) of slices
• Shared data blocks should be placed at fixed address-inter-

leaved on-chip locations

4 R-NUCA Design
We base our design on a CMP with private split L1 I/D caches and
a distributed shared L2 cache. The L2 cache is partitioned into
“slices,” which are interconnected by an on-chip 2-D folded torus
network. We assume that cores and L2 slices are distributed on the
chip in tiles, forming a tiled architecture similar to the one
described in Section 2.2. This assumption is made to simplify the
explanation of our design, and is not a limitation. The mechanisms
we describe apply to alternative organizations, for example, groups
of cores assigned to a single L2 slice.
Conceptually, the R-NUCA placement scheme operates on over-
lapping “clusters” of one or more tiles. R-NUCA introduces
“fixed-center” clusters, which consist of the tiles logically sur-
rounding a core. Each core defines its own fixed-center cluster. For
example, clusters C and D in Figure 6 each consist of the tile at the
center and the neighboring tiles around it. Because fixed-center
clusters logically surround a core, they allow for fast nearest-neigh-
bor communication.
Clusters can be of various power-of-2 sizes. Clusters C and D in
Figure 6 are size-4. Size-1 clusters always consist of a single tile
(e.g., cluster B). In our example, size-16 clusters comprise all tiles
(e.g., cluster A). As shown in Figure 6, clusters may overlap each
other. Data within each cluster are interleaved among the partici-
pating L2 slices, and shared among all cores participating in that
cluster.

4.1 Indexing and Rotational Interleaving
R-NUCA indexes blocks within each cluster using the standard
address interleaving and the rotational interleaving indexing
schemes. In standard address interleaving, an L2 slice is selected
based on the bits immediately above the set-index bits of the
accessed address. R-NUCA uses standard address interleaving for
the size-16 and size-1 clusters (in the size-1 cluster, the scheme
degenerates to a single interleave: the only slice in the cluster).
To index blocks in a size-4 cluster, R-NUCA utilizes rotational
interleaving. Under rotational interleaving, each core is assigned an
ID by the operating system, e.g., at boot time. This ID may be dif-
ferent from the conventional core ID that the OS gives to each core.
To avoid confusion, in the remainder of this paper we refer to the
rotational ID as RID, and to the conventional one as CID. For illus-

tration purposes, we assume that a tile, its core, and its slice share
the same RID and CID.
RIDs in a size-n cluster range from 0 to n-1. To assign RIDs, the
OS first assigns to a random tile the RID 0. Consecutive tiles in a
row receive consecutive RIDs (n-1 wraps around to 0, and the two
are considered consecutive). Similarly, consecutive tiles in a col-
umn are assigned RIDs that differ by log2(n), again with n-1 wrap-
ping around to 0. An example of RID assignment for size-4 fixed-
center clusters is shown in Figure 6.
To index a block in its size-4 fixed-center cluster, the center core
uses the 2 address bits <a1,a0> immediately above the set-index
bits. The core compares the address bits with its own RID <c1, c0>

using boolean logic1, and the outcome of the comparison deter-
mines whether the core indexes the block at its local slice, the slice
above it in the cluster, the slice on the left, or the slice on the right.
In our example in Figure 6, if the center core in cluster C accesses
a block with address bits <0, 1>, the core will evaluate the boolean
function and look for the block at the slice on its left. Similarly,
when the center core at cluster D accesses the same block, it will
attempt to find it at the same slice (above the center of cluster D).
Thus, each slice stores exactly the same 1/n of the data on behalf of
any cluster it belongs to. This property of rotational interleaving
allows clusters to replicate data without increasing cache pressure,
and at the same time affording nearest-neighbor communication.
The implementation of rotational interleaving is trivial. It requires
only that tiles have RIDs, and indexing is performed through sim-
ple boolean logic on the tile’s RID and the block’s address. The
rotational-interleaving scheme can be generalized to clusters of any
power-of-two size, however, for illustration purposes, we only
describe it for size-4 clusters.

4.2 Placement
Depending on the access latency requirements, the working set, the
user-specified configuration, or other factors available to the OS,
the system can smoothly trade off latency, capacity, and replication
degree by varying the cluster sizes. Based on the cache block’s
classification presented in Section 3.2, R-NUCA selects the appro-

1. The general form of the indexing function for size-n clusters with the
address interleaving bits starting at offset k is:

For size-4 clusters, the 2-bit result instructs the core to send the request
to the slice that is local to the core, to the right, above or to the left, for
binary results <0,0>, <0,1>, <1,0> and <1,1> respectively.

10 11 0100
00 01 1110
10 11 0100
00 01 1110

00
A

B C

D

10 11 0100
00 01 1110
10 11 0100
00 01 1110

00
A

B C

D

FIGURE 6. Example of R-NUCA clusters and Rotational
Interleaving. The array of rectangles represents the tiles.
The binary numbers in the rectangles denote the tile’s RID.
The lines surrounding some of the tiles are clusters.

R Addr k log2 n() : k+[] RID 1+ +() n 1–()∧=
7

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
priate cluster and places the block according to the address inter-
leaving of the slices within this cluster.
In our configuration, R-NUCA utilizes only clusters of size-1, size-
4 and size-16. R-NUCA places core-private data in the size-1 clus-
ter encompassing the core, ensuring lowest access latency. Shared
data blocks are placed in size-16 clusters which are fully over-
lapped by all sharers. The shared data placement policy avoids rep-
lication, obviating the need for a coherence mechanism by ensuring
that, for each shared block, there is a unique slice to which that
block is mapped by all sharers. Instructions are allocated in the
most size-appropriate fixed-center cluster (size-4 for our work-
loads), and are replicated across clusters on chip. Thus, instructions
are shared by neighboring cores and replicated at distant ones,
ensuring low access latency for surrounding cores while balancing
capacity constraints. Although R-NUCA forces an instruction clus-
ter to experience an off-chip miss rather than retrieving blocks
from other on-chip replicas, the performance impact of these “com-
pulsory” misses is negligible.

4.3 Page Classification
R-NUCA performs classification of memory accesses at the time
of a TLB miss. Classification is performed at the OS-page granu-
larity, and communicated to the processor cores using the standard
TLB mechanism. Requests from the L1 instruction cache are
immediately classified as “instructions” and a lookup is performed
assuming a size-4 fixed-center cluster centered at the requesting
core. All other requests are classified as data requests, and the
operating system is responsible for distinguishing between private
and shared data accesses.
To determine a private or shared classification for data pages, the
operating system extends the page table entries with a bit that
denotes the current classification, and a field to record the CID of
the last core to access the page. Upon the first access, a core
encounters a TLB miss and traps to the OS. The OS marks the
faulting page as private and the CID of the accessor is recorded.
The accessor receives a TLB fill with an additional Private bit set.
On any subsequent request, during the virtual-to-physical transla-
tion, the requestor also examines the Private bit and looks for the
block only in its own local slice.
On a subsequent TLB miss, the OS compares the CID in the page
table entry with the CID of the core encountering the TLB miss. In
the case of a mismatch, two situations are possible. Either the
thread accessing this page has been migrated to another core and
the page is still private to the thread, or the page is actively shared
by multiple cores and it must be re-classified as shared. Because
the OS is fully aware of thread scheduling, it can precisely deter-
mine whether or not thread migration took place, and correctly
classify a page as private or shared.
If the page is actively shared, the OS must re-classify the page from
private to shared. Upon a re-classification, the OS first sets the
page to a poisoned state. Subsequent requests for the page are held
until the poisoned state is cleared. Then, the OS shoots down the
TLB entry and invalidates any cache blocks belonging to this page
at the tile CID marked as the previous accessor’s.1 When the shoot-
down operation completes, the OS classifies the page as shared by
clears the Private bit, removes the poisoned state from the page
table entry, and services any pending TLB requests. Because the
private bit is now cleared, any core that receives a TLB entry will
treat accesses to this page as shared, applying the standard address

interleaving over the entire aggregate cache to locate the shared
block.
The case for thread migration from one core to another is handled
in the same manner. The only difference being that the page retains
its private classification, and the CID in the page table entry is
updated to the CID of the new owner of the page.
The implementation of R-NUCA’s placement scheme is simple.
Placement is achieved through an interaction of the OS and a bool-
ean-logic index-remapping mechanism. The OS extends each page
table entry with log2(n)+1 bits, performs trivial classification at
page granularity upon a TLB miss, and communicates the classifi-
cation to the cores via the standard TLB fill operation. Each TLB
entry is extended with a bit to indicate whether the page holds pri-
vate or shared data. Instruction references are immediately recog-
nized, as they come from the instruction cache. On an L1-D miss,
the request’s original (I or D cache) and the additional Private TLB
bit guides the index-remapping logic in the selection of the L2 slice
to which the request should be sent. Both the software and hard-
ware mechanisms are inherently simple: the operating system has
precise knowledge of all the information added to the TLB entry;
the index-remapping hardware applies simple boolean logic on the
TLB bit, the requested address, and the core’s RID.

4.4 Extensions
While our configuration of R-NUCA utilizes only clusters of size-
1, size-4 and size-16, the techniques can be applied to clusters of
different types and sizes. For example, R-NUCA can utilize fixed-
boundary clusters, which have a fixed rectangular boundary and all
cores within the rectangle share the same data. The regular shapes
of these clusters make them appropriate for partitioning a multicore
processor into equal-size non-overlapping partitions, which may
not always be possible with fixed-center clusters. The regular
shapes come at the cost of allowing a smaller degree of nearest-
neighbor communication, as tiles in the corners of the rectangle are
farther away from the other tiles in the cluster.
The indexing policy is orthogonal to the cluster type. Indexing
within a cluster can be performed using either standard address
interleaving or rotational interleaving. The choice of interleaving
policy depends on the replication requirements of the data. Rota-
tional interleaving is appropriate for replicating data while balanc-
ing capacity constraints. Standard address interleaving is
appropriate when clusters are disjoint. By designating a “center”
for a cluster and communicating it to the cores via the TLB mecha-
nism, both interleaving mechanisms are possible for any cluster
type of any size.
Although we evaluate R-NUCA with fixed-center clusters only for
instructions, different configurations are possible. For example,
when running heterogeneous workloads where the threads at each
core have different private cache capacity requirements, it is possi-
ble to use a fixed-center cluster of appropriate size for private data,
effectively spilling blocks to the neighboring slices to lower cache
capacity pressure while retaining fast lookup.

1. This step is required to guarantee coherence and can be performed by
any shoot-down mechanism such as scheduling a special shoot-down
kernel thread at the previous accessor’s core; special instructions or
PAL code routines to perform this operation already exist in many of
today’s architectures.
8

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
5 Evaluation
5.1 Methodology
For each CMP configuration we implement four mechanisms to
manage the NUCA cache: shared, private, ASR, and R-NUCA.
The shared and private organizations are similar to the ones
described in Section 2.2. ASR [4] is based on the private scheme
and adds an adaptive mechanism which, upon an L1 eviction of a
clean shared block, it decides with some probability whether to
allocate that block in the private L2 slice. If it decides not to allo-
cate it, the block is allocated at an empty cache frame at another L2
slice, or it is dropped if no empty L2 frame exists or there are other
sharers on chip. We select ASR for our comparison because it has
been shown to outperform all prior proposals for on-chip cache
management in a multicore processor.
Although we did a best-effort implementation for ASR, our results
did not match with [4]. We believe that the assumptions of our sys-
tem penalize the ASR implementation, while the assumptions of
[4] penalize the shared cache implementation that we use as our
baseline. The relatively fast memory system (90 cycles vs. 500
cycles in [4]) and the long-latency coherence operations due to our
directory-based implementation ([4] utilizes token broadcast) leave
ASR with a small opportunity for improvement. We implemented
three versions for ASR: an adaptive version following the guide-
lines in [4], a scheme that always chooses to allocate an L1 victim
at the local slice, and a scheme that always sends the L1 evicts
through the logical write-back ring. In our results for ASR, we
report the highest-performing mechanism of these three implemen-
tations for each workload.
For the private and ASR schemes we assume optimistically an on-
chip full-map distributed directory with zero area overhead. In real-
ity, a full-map directory will require more area than the aggregate
L2 cache, and novel approaches are required to maintain coherence
among the tiles with a lower overhead. Such techniques are beyond
the scope of this paper. Similarly, we assume that ASR has no area
overhead. Thus, the speedup of R-NUCA against a realistic private
and ASR organization based on distributed directories will be
higher than reported in this paper.
Our on-chip coherence protocol is a four-state MOSI protocol
modeled after Piranha [2]. Our cores perform speculative load exe-
cution and store prefetching as described in [12,18]. Hence, our
base system is similar to the system described in [30]. We simulate
one memory controller per four cores. Each memory controller is
co-located with one tile and communicates with memory through
flip-chip transistors. The controllers communicate with the tiles
through the on-chip interconnection network and pages are inter-
leaved among all controllers in a round-robin fashion. The page
size in our system is 8KB. We list other relevant parameters in
Table 1 (left).
For the interconnection network we simulate a 2-D folded torus
[13]. While prior research typically utilizes mesh interconnects due
to their simple implementation, meshes allow hot spots to form in
the middle of the network and penalize tiles at the edges with detri-
mental effects to performance. In contrast, torus interconnects have
no “edges” and treat nodes homogeneously, spreading the traffic
across all links and avoiding hot spots. We believe that 2-D tori can
be built efficiently in modern VLSI by following a folded topology
[37] which eliminates long links. While a 2-D torus is not planar,

each one of its dimensions is, requiring only two metal layers for
the interconnect [37]. With current commercial products already
featuring 11 metal layers we believe 2-D torus interconnects are a
feasible design point. Moreover, tori have compared favorably
against meshes with respect to area and power overhead [37]. All
cache organization alternatives we evaluate assume a 2-D torus
topology, thus all alternatives receive exactly the same benefits
from the interconnect.
We measure performance using the SimFlex multiprocessor sam-
pling methodology [39]. The SimFlex methodology extends the
SMARTS [40] statistical sampling framework to multiprocessor
simulation. Our samples are drawn over an interval of 10s to 30s of
simulated time for OLTP and web server applications, over the
complete query execution for DSS, over a complete single iteration
for the scientific application and over the first 10 billion instruc-
tions for the multi-programmed workload after all applications
have entered their loop iterations. We launch measurements from
checkpoints with warmed caches, branch predictors, TLBs, on-
chip directory and OS page table, then warm queue and intercon-
nect state for 100,000 cycles prior to measuring 50,000 cycles. We
use the aggregate number of user instructions committed per cycle
(i.e., committed user instructions summed over all cores divided by
total elapsed cycles) as our performance metric, which is propor-
tional to overall system throughput [39].

5.2 Classification Accuracy
While we performed the workload analysis in Section 3 at the gran-
ularity of cache blocks, R-NUCA classifies entire pages. Pages
may contain blocks of a different class, for example part of a page
may contain private data, while the remaining may contain shared
data. For our workloads, we found that between 10% - 27% of L2
references are to pages with more than one class. However, the ref-
erences issued to these pages are dominated by a single class. If a
page services both shared and private data, accesses to shared data
dominate. By designating such a page as “shared-data” we effec-
tively capture the majority of the references and miss-classify only
a small portion of them. As a result, classification at page granular-
ity results in the miss-classification of only 0.64% - 0.75% of the
L2 references, which is a very small cost to pay for the benefits
awarded by using pages. Thus, we conclude our page classification
is accurate.

FIGURE 7. Total CPI breakdown for L2 organizations.
CPI is normalized to the private organization.

0

0.2

0.4

0.6

0.8

1

1.2

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

P
riv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

P
riv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

OLTP
DB2

Apache DSS
Qry8

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse workloads

N
or

m
al

iz
ed

 C
PI

Busy L1-to-L1 L2 Off chip Other Re-classification
9

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
5.3 Impact of R-NUCA Mechanisms
We compare R-NUCA against the shared, private and ASR organi-
zations on CMPs running our workload suite. Because different
workloads favor a different cache organization, we split our work-
loads into two categories: private-averse and shared-averse based
on which organization has a higher CPI. Private may perform
poorly when it increases the number of off-chip accesses, or when
there is a large number of L1-to-L1 or L2 coherence requests. An
L1-to-L1 request occurs when a core misses on its private L1 and
L2 slice, and the data are transferred from a remote L1. An L2
coherence request occurs when a core misses on its private L1 and
L2 slice, and the data are transferred from a remote L2. The private
and ASR organizations penalize such requests, because the request
has to be sent first to the on-chip distributed directory, which will
forward the request to the remote tile, which then probes its L2
slice and (if needed) its L1 and replies with the data. Thus, such
requests incur additional network traversals and additional
accesses to remote L2 slices. Similarly, the shared organization
may perform poorly when there are a lot of accesses to private data
or instructions, which the shared scheme spreads across the entire
chip, while the private scheme services through the local and fast
L2 slice.
Figure 7, shows a breakdown of the cycles-per-instruction (CPI)
normalized to the private organization. We measure the CPI due to
useful computation (busy), L1-to-L1 transfers, L2 loads and
instruction fetches (L2), off-chip accesses, other delays (e.g., front-
end and L1 stalls), and the CPI due to page re-classifications in R-
NUCA. We account for loads separately from stores, as read
latency is difficult to overlap, while recent techniques minimize
store latency [38,6]. Thus, we account for store latency in the
“other” category. Figure 7 shows that re-classifications result in
negligible overhead due to their infrequency. Overall, R-NUCA
delivers on its promise and outperforms the competing organiza-
tions, as it lowers the L2 hit latency exhibited by the shared organi-
zation, and eliminates the long-latency coherence operations of the
private and ASR schemes.
Impact of L2 coherence elimination. Figure 8 shows the portion
of the total CPI due to accesses to shared data, which may engage
the coherence mechanism. Shared data in R-NUCA and the shared
organization are interleaved across all L2 slices, thus such requests

are of equal latency for both. The private and ASR schemes repli-
cate data locally, so sometimes a request is serviced from the local
L2 slice (“L2 shared load”) while other times it is serviced from a
remote one (“L2 shared load coherence”). While accesses to the
local L2 slice are fast, accesses to a remote tile engage the on-chip
coherence mechanism, and require one more network traversal and
one more L2 slice access than shared or R-NUCA. Thus, the bene-
fits of fast local reuse for shared data under the private and ASR
schemes are quickly outweighed by the long-latency coherence
operations. On average, the elimination of L2 coherence requests
allow R-NUCA to exhibit a 11% lower CPI contribution of
accesses to shared data. Similarly, L1-to-L1 requests require an
additional remote L2 slice access in the private and ASR schemes,
as the coherence mechanism works at the granularity of tiles. By
eliminating the additional remote L2 slice access, R-NUCA lowers
the latency for L1-to-L1 requests by 27% on average. Overall,
eliminating the coherence requirements at L2 lowers the CPI due to
shared data accesses by 21% on average against the private and
ASR schemes.
Impact of local allocation of private data. Similar to the private
and ASR schemes, R-NUCA allocates private data at the local L2
slice for fast access, while the shared scheme distributes them
across all L2 slices, requiring more cycles per request. Figure 9
shows the impact of allocating the private data locally. Overall, R-
NUCA lowers the latency of accessing private data by 48% against
shared, matching the performance of the private scheme’s when
accessing private data.
Impact of instruction clustering. While R-NUCA’s clustered rep-
lication scheme spreads instructions between neighbors, they are
only one hop away from the requestor and the fast lookup afforded
by the rotational interleaving matches the speed of a local L2
access. In contrast, the shared scheme spreads instruction blocks
across the entire chip area, therefore requiring significantly more
cycles for each instruction L2 request (Figure 10). As a result, R-
NUCA obtains instruction blocks from L2 on average 38% faster
than shared. In OLTP-Oracle, it obtains instructions even faster
than the private scheme, as the latter accesses remote tiles to fill
some of its requests.
While the private scheme affords fast instruction L2 accesses, the
excessive replication of the instruction stream causes the eviction

0

0.1

0.2

0.3

0.4

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

A
SR

S
ha

re
d

R
-N

U
C

A

P
riv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

P
riv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

OLTP
DB2

Apache DSS
Qry8

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
or

m
al

iz
ed

 C
PI

L1-to-L1
L2 shared load coherence
L2 shared load

FIGURE 8. Impact of L2 coherence elimination. The CPI
is normalized to the total CPI of the private organization.

FIGURE 9. Impact of local allocation of private data. The
CPI is normalized to the total CPI of the private organization.

0

0.1

0.2

0.3

0.4

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

OLTP
DB2

Apache DSS
Qry8

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
or

m
al

iz
ed

 C
PI

0.52
10

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
of data blocks and a subsequent increase in off-chip misses.
Figure 11 compares size-1 instruction clusters, where instructions
are stored in the local L2 slice, with size-4 clusters, similar to the
ones in our configuration of R-NUCA. We find that storing instruc-
tions only in the local L2 slice increases the off-chip CPI compo-
nent by 70% on average over a size-4 cluster, with detrimental
effects to performance. At the same time, as Figure 10 suggests for
the shared organization, clusters larger than size-4 spread instruc-
tion blocks to a larger area, increasing the latency to access them
by almost 40%. We find that, for our workloads, a cluster size of
four gives the best balance between L2 hit latency and off-chip
misses.

5.4 Performance Improvement
Overall, we find that R-NUCA lowers the CPI contribution of L2
hits by 15% on average against private, and 26% on average
against shared. At the same time, R-NUCA is effective in maintain-
ing the large aggregate capacity of the distributed L2 cache much
like the shared organization does. The CPI contribution of off-chip
misses for R-NUCA is on average within 20% of the shared
scheme’s, while the private organization increases the off-chip CPI
by 80% on average. Thus, R-NUCA delivers both the fast local
access of the private scheme, as well as the large effective cache
capacity of the shared scheme, therefore bridging the gap between
the two organizations. Even more, it avoids the long-latency coher-
ence operations of the private and ASR schemes, achieving even
better performance. As a result, R-NUCA provides an average
speedup of 17% against private on private-averse workloads, and
17% against shared on shared-averse workloads. The correspond-
ing speedups are shown at Figure 12, along with the 95% confi-
dence intervals produced by our sampling methodology. The
results are even more encouraging for server workloads alone,
where R-NUCA attains an average speedup of 20% against either
alternative.

5.5 Impact of Technology
As Moore’s Law continues and the number of cores on chip con-
tinue to grow, the on-chip interconnect and the aggregate cache
will grow commensurately. This will make the shared organization
even less attractive, as cache blocks will be spread over an ever
increasing number of tiles. At the same time, the coherence

demands of the private and private-based schemes will grow by the
size of the aggregate cache, increasing the area and latency over-
head for accesses to shared data. R-NUCA eliminates coherence
among the L2 slices, therefore avoiding the private organization’s
overheads, while still exhibiting fast L2 access times. Moreover, by
allowing for the local and nearest-neighbor allocation of blocks, R-
NUCA will continue to provide an ever-increasing performance
benefit over the shared scheme. Finally, we believe that the gener-
ality of R-NUCA’s clustering scheme will allow for the seamless
decomposition of a large-scale multicore chip into virtual domains,
each one with its own subset of the cache, where each domain will
experience fast and trivial cache lookup through rotational inter-
leaving with minimal hardware and operating system involvement.

6 Related work
To mitigate the access latency of large on-chip caches, Kim pro-
posed Non-Uniform Cache Architectures (NUCA) [24], showing
that a network of independent cache banks can be used to reduce
average access latency. Chishti proposed to decouple physical
placement from logical organization [9] to add flexibility to the
NUCA design.

FIGURE 10. CPI contribution of L2 instruction accesses.
The CPI is normalized to the total CPI of the private scheme.

0

0.1

0.2

0.3

0.4

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

A
SR

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

A
SR

S
ha

re
d

R
-N

U
C

A

P
riv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

P
riv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

OLTP
DB2

Apache DSS
Qry8

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

N
or

m
al

iz
ed

 C
PI

0

0.2

0.4

0.6

0.8

1

1.2

1 4 1 4 1 4 1 4 1 4 1 4

OLTP
DB2

Apache DSS
Qry8

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse workloads

N
or

m
al

iz
ed

 C
PI

Busy L1-to-L1 L2 Off chip Other Re-classification

FIGURE 11. CPI breakdown with size-1 and size-4
instruction clusters. The CPI is normalized to size-1.

FIGURE 12. Performance Improvement. Speedup over
the private organization for private-averse workloads, and
over the shared organization for shared-averse workloads.

1

1.1

1.2

1.3

1.4

Pr
iv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

P
riv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

AS
R

Sh
ar

ed
R

-N
U

C
A

Pr
iv

at
e

AS
R

S
ha

re
d

R
-N

U
C

A

Pr
iv

at
e

AS
R

Sh
ar

ed
R

–N
U

C
A

Pr
iv

at
e

AS
R

Sh
ar

ed
R

–N
U

C
A

OLTP
DB2

Apache DSS
Qry8

em3d OLTP
Oracle

MIX

Private-averse workloads Shared-averse
workloads

Sp
ee

du
p

11

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
Beckmann evaluated NUCA architectures in the context of CMPs
[5], concluding that dynamic migration of blocks within a NUCA
can benefit performance but requires smart lookup algorithms and
may cause contention in the physical center of the cache. Kandemir
proposed migration algorithms to achieve near-optimal location for
each cache block [23], and Ricci proposed smart lookup mecha-
nisms using Bloom filters [31]. In contrast to these works, R-
NUCA avoids block migration in favor of intelligent block place-
ment, thus avoiding the central contention problem and eliminating
the need for an intelligent lookup algorithm.
Zhang observed that different classes of accesses benefit from
either a private or shared system organization [44] in multi-chip
multi-processors. Falsafi proposed to apply either private or shared
organization by dynamically adapting the system on a per-page
granularity [16]. R-NUCA similarly applies either a private or
shared organization at page granularity, however we leverage the
OS to properly classify the pages, avoiding reliance on heuristics.
Huh extended the NUCA work to CMPs [21], investigating the
effect of sharing policies. Yeh [41] and Merino [29] proposed
coarse-grain approaches of splitting the cache into private and
shared slices. Guz advocated building separate but exclusive
shared and private regions of cache. R-NUCA similarly treats data
blocks as private until accesses from multiple cores are detected.
Finer-grained dynamic partitioning approaches have also been
investigated. Dybdahl proposed a dynamic algorithm to partition
the cache into private and shared regions [15], while Zhao pro-
posed partitioning by dedicating some cache ways to private oper-
ation [45]. R-NUCA enables dynamic and simultaneous shared and
private, however unlike prior proposals, this is achieved without
modification of the underlying cache architecture and without
enforcing strict constraints on either the private or shared capacity.
Chang proposed a private organization which steals capacity from
neighboring private slices, relying on a centralized structure to
keep track of sharing. Liu used bits from the requesting-core ID to
select the set of L2 slices to probe first [26], using a table-based
mechanism to perform a mapping between the core ID and cache
slices. R-NUCA applies a mapping based on the requesting-core
ID, however this mapping is performed through boolean operations
on the ID without an indirection mechanism. Additionally, prior
approaches generally advocate performing lookup through multi-
ple serial or parallel probes or indirection through a directory struc-
ture; R-NUCA is able to perform exactly one probe to one cache
slice to look up any block or to detect a cache miss.
Zhang advocated the use of a tiled architecture, coupling cache
slices to processing cores [43]. Starting with a shared substrate,
[43] creates local replicas to reduce access latency, requiring a
directory structure to keep track of the replicas. As proposed, [43]
wastes capacity because locally allocated private blocks are dupli-
cated at the home node, and offers minimal benefit to workloads
with large shared read-write working set which does not benefit
from replication. R-NUCA assumes a tiled architecture with a
shared cache substrate, but avoids the need for a directory mecha-
nism by only replicating blocks known to be read-only. Zhang
improves on the design of [43] by migrating private blocks to avoid
wasting capacity at the home node [42], however this design still
can not benefit shared data blocks.
Beckmann proposed an adaptive scheme that dynamically adjusts
the degree to which the local slice is used for replication of read-
only blocks [4]. Unlike [4], R-NUCA is not limited to replicating

blocks to a single cache slice, allowing for clusters of nearby slices
to share capacity for replication. Furthermore, the heuristics
employed in [4] require fine-tuning and adjustment, being highly
sensitive to the underlying architecture and workloads, whereas R-
NUCA offers a direct ability to smoothly trade off replicated
capacity for access latency.
Marty studied the benefits of partitioning a cache for multiple
simultaneously-executing workloads [28] and proposed a hierar-
chical structure to simplify handling of coherence between the
workloads. The R-NUCA organization can be similarly applied to
achieve run-time partitioning of the cache while still preserving the
R-NUCA access latency benefits within each partition.
OS-driven cache placement has been studied in a number of con-
texts. Sherwood proposed to guide cache placement in software
[34], suggesting the use of the TLB to map addresses to cache
regions. Tam used similar techniques to reduce destructive interfer-
ence for multi-programmed workloads [36]. Jin advocated the use
of the OS to control cache placement in a shared NUCA cache,
suggesting that limited replication is possible through this
approach [22]. Cho used the same placement mechanism to parti-
tion the cache slices into groups [11]. R-NUCA leverages the work
of [22] and [11], using the OS-driven approach to guide placement
in the cache. Unlike prior proposals, R-NUCA enables dynamic
creation of overlapping clusters of slices without additional hard-
ware, and enables use of these clusters for dedicated to private, rep-
licated private, and shared operation. Fensch advocates the use of
OS-driven placement to avoid a cache-coherence mechanism [17].
R-NUCA similarly uses the OS-driven placement to avoid cache-
coherence at the L2, however R-NUCA does so without placing
strict capacity limitations on replication of read-only blocks or on
moving of private data when threads are migrated.

7 Conclusions
Wire delays are becoming the dominant component of on-chip
communication; meanwhile, increased device density is driving a
rise in on-chip core count and cache capacity, both factors that rely
on fast on-chip communication. Although the physical organiza-
tion of distributed caches permits low-latency access by cores to
nearby cache slices, the logical organization of the distributed L2
remains an open research topic. Private L2 organizations offer fast
local accesses at the cost of substantially lower effective cache
capacity, while statically-interleaved shared organizations offer
large capacity at the cost of higher average access latency. Prior
research proposes hybrid designs that strike a balance between
latency and capacity, but fail to optimize for all accesses, or rely on
complex, area-intensive and high-latency lookup and coherence
mechanisms.
In this work, we observe that accesses can be classified into distinct
classes, where each class is amenable to a different placement pol-
icy. Based on this observation, we propose R-NUCA, a novel data
placement scheme that optimizes the placement of each access
class. By utilizing novel rotational interleaving mechanisms and
cluster organizations, R-NUCA offers fast local access while main-
taining high aggregate capacity, and simplifies the design of the
multicore processor by obviating the need for coherence at the L2
cache. R-NUCA has minimal software and hardware overheads,
and improves performance by 17% on average against competing
designs, and by 26% at best.
12

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
References
[1] M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar,

P. Kundu, S. Park, I. Schoinas, and A. S. Vaidya. Integration
challenges and trade-offs for tera-scale architectures. Intel
Technology Journal, August 2007.

[2] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-
ranha: A scalable architecture base on single-chip multipro-
cessing. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, June 2000.

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In Pro-
ceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[4] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR:
Adaptive selective replication for CMP caches. In Proceed-
ings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 39), pages 443–454, 2006.

[5] B. M. Beckmann and D. A. Wood. Managing wire delay in
large chip-multiprocessor caches. In Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 37), pages 319–330, Washington, DC, USA,
2004.

[6] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulk en-
forcement of sequential consistency. In Proceedings of the
34th Annual International Symposium on Computer Archi-
tecture, 2007.

[7] J. Chang and G. S. Sohi. Cooperative caching for chip multi-
processors. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, pages 264–276,
Washington, DC, USA, 2006.

[8] G. Chen, H. Chen, M. Haurylau, N. Nelson, P. M. Fauchet,
E. G. Friedman, and D. H. Albonesi. Electrical and optical
on-chip interconnects in scaled microprocessors. In IEEE In-
ternational Symposium on Circuits and Systems, pages 2514–
2517, 2005.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance as-
sociativity for high-performance energy-efficient non-uni-
form cache architectures. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO 36), page 55, Washington, DC, USA, 2003.

[10] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing
replication, communication, and capacity allocation in
CMPs. In Proceedings of the 32nd Annual International Sym-
posium on Computer Architecture, pages 357–368, Washing-
ton, DC, USA, 2005.

[11] S. Cho and L. Jin. Managing distributed, shared L2 caches
through OS-level page allocation. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 39), pages 455–468, 2006.

[12] Y. Chou, L. Spracklen, and S. G. Abraham. Store memory-
level parallelism optimizations for commercial applications.
In Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 38), pages 183–
196, Washington, DC, USA, 2005.

[13] W. J. Dally and C. L. Seitz. The torus routing chip. Distribut-
ed Computing, 1(4):187–196, 1986.

[14] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP
throughput with mediocre cores. In Proceedings of the Thir-
teenth International Conference on Parallel Architectures
and Compilation Techniques, pages 51–62, Washington, DC,
USA, 2005.

[15] H. Dybdahl and P. Stenstrom. An adaptive shared/private
NUCA cache partitioning scheme for chip multiprocessors.
In Proceedings of the Thirteenth IEEE Symposium on High-
Performance Computer Architecture, pages 2–12, Washing-
ton, DC, USA, 2007.

[16] B. Falsafi and D. A. Wood. Reactive NUMA: A design for
unifying S-COMA and CC-NUMA. In Proceedings of the
24th Annual International Symposium on Computer Archi-
tecture, pages 229–240, June 1997.

[17] C. Fensch and M. Cintra. An OS-based alternative to full
hardware coherence on tiled CMPs. In Proceedings of the
14th IEEE Symposium on High-Performance Computer Ar-
chitecture, 2008.

[18] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. In Proceedings of the 1991 International Conference
on Parallel Processing (Vol. I Architecture), pages I–355–
364, Aug. 1991.

[19] Z. Guz, I. Keidar, A. Kolodny, and U. C. Weiser. Utilizing
shared data in chip multiprocessors with the Nahalal architec-
ture. In Proceedings of the 20th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
1–10, New York, NY, USA, 2008.

[20] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database servers on chip multi-
processors: limitations and opportunities. In Proceedings of
the 3rd Biennial Conference on Innovative Data Systems Re-
search, pages 79–87, Asilomar, CA, USA, 2007.

[21] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A NUCA substrate for flexible CMP cache sharing.
pages 31–40, New York, NY, USA, 2005.

[22] L. Jin, H. Lee, and S. Cho. A flexible data to L2 cache map-
ping approach for future multicore processors. In Proceed-
ings of the 2006 Workshop on Memory System Performance
and Correctness (MSPC’06), pages 92–101, New York, NY,
USA, 2006.

[23] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. A novel mi-
gration-based NUCA design for chip multiprocessors. pages
1–12, Piscataway, NJ, USA, 2008.

[24] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uni-
form cache structure for wire-delay dominated on-chip cach-
es. ACM SIGPLAN Not., 37(10):211–222, 2002.

[25] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded SPARC processor. IEEE Micro,
25(2):21–29, Mar-Apr 2005.

[26] C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing
the last line of defense before hitting the memory wall for
cmps. In Proceedings of the Tenth IEEE Symposium on High-
Performance Computer Architecture, page 176, Washington,
DC, USA, 2004.

[27] M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence:
Decoupling performance and correctness. In Proceedings of
the 30th Annual International Symposium on Computer Ar-
chitecture, June 2003.

[28] M. R. Marty and M. D. Hill. Virtual hierarchies to support
server consolidation. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, pages 46–
56, New York, NY, USA, 2007.

[29] J. Merino, V. Puente, P. Prieto, and J. ’Angel Gregorio. SP-
NUCA: a cost effective dynamic non-uniform cache architec-
ture. ACM SIGARCH Computer Architecture News,
36(2):64–71, 2008.

[30] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso. Performance of database workloads on shared-
memory systems with out-of-order processors. In Proceed-
ings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS VIII), pages 307–318, Oct. 1998.

[31] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian.
Leveraging bloom filters for smart search within NUCA
caches. In Proceedings of WCED, June 2006.

[32] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larra-
bee: a many-core x86 architecture for visual computing. ACM
Trans. Graph., 27(3):1–15, 2008.

[33] Semiconductor Industry Association. The International Tech-
nology Roadmap for Semiconductors (ITRS). http://
www.itrs.net/, 2007 Edition.

[34] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses
using hardware and software page placement. In Proceedings
13

Computer Architecture Lab at Carnegie Mellon Technical Report CALCM-TR-2008-001
Submitted to ISCA 2009
of the 13th Annual International Conference on Supercom-
puting, pages 155–164, 1999.

[35] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim,
A. Ailamaki, and B. Falsafi. Memory coherence activity pre-
diction in commercial workloads. In Proceedings of the Third
Workshop on Memory Performance Issues (WMPI-2004),
June 2004.

[36] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing
shared L2 caches on multicore systems in software. In Pro-
ceedings of the Workshop on the Interaction between Operat-
ing Systems and Computer Architecture, 2007.

[37] B. Towles and W. J. Dally. Route packets, net wires: On-chip
interconnection networks. Design Automation Conference,
0:684–689, 2001.

[38] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for store-wait-free multiprocessors. ACM SI-
GARCH Computer Architecture News, 35(2):266–277, 2007.

[39] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of
computer system simulation. IEEE Micro, 26(4):18–31, Jul-
Aug 2006.

[40] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation

through rigorous statistical sampling. In Proceedings of the
30th Annual International Symposium on Computer Archi-
tecture, June 2003.

[41] T. Y. Yeh and G. Reinman. Fast and fair: data-stream quality
of service. In Proceedings of the 2005 International Confer-
ence on Compilers, Architectures and Synthesis for Embed-
ded Systems (CASES’05), pages 237–248, New York, NY,
USA, 2005.

[42] M. Zhang and K. Asanovic. Victim migration: Dynamically
adapting between private and shared CMP caches. Technical
report, MIT, 2005.

[43] M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiproces-
sors. In Proceedings of the 32nd Annual International Sym-
posium on Computer Architecture, pages 336–345, 2005.

[44] Z. Zhang and J. Torrellas. Reducing remote conflict misses:
Numa with remote cache versus coma. In Proceedings of the
Third IEEE Symposium on High-Performance Computer Ar-
chitecture, page 272, Washington, DC, USA, 1997.

[45] L. Zhao, R. Iyer, M. Upton, and D. Newell. Towards hybrid
last-level caches for chip-multiprocessors. SIGARCH Com-
puter Architecture News, 36(2):56–63, 2008.
14

	Abstract
	1 Introduction
	2 Background
	2.1 Non-Uniform Cache Architectures
	2.2 Tiled architectures
	FIGURE 1. Typical tiled architecture. Each tile contains a core, L1 instruction and data caches, and a shared-L2 cache slice, interconnected into a 2-D folded torus.

	2.3 Requirements for Intelligent Cache Block Placement

	3 Characterization of L2 References
	3.1 Methodology
	TABLE 1. System and application parameters for 16-core in-order and 8-core out-of-order CMPs.

	3.2 Categorization of Cache Accesses
	FIGURE 2. L2 Reference Clustering. Categorization of references to L2 blocks with respect the blocks’ number of sharers, read-write behavior and instruction or data access class.
	FIGURE 3. L2 Reference breakdown. Distribution of L2 references by access class.

	3.3 Characterization of Access Classes
	3.3.1 Private Data
	FIGURE 4. L2 working set sizes. CDF of L2 references to private data, instructions, and shared data vs. the footprint of each access class (in log-scale). References are normalized to total L2 references for each workload.

	3.3.2 Instructions
	3.3.3 Shared Data
	FIGURE 5. Instruction and shared data reuse. Reuse of instructions and shared data by the same core. References are normalized to total L2 references for each workload.

	3.4 Characterization Conclusions

	4 R-NUCA Design
	4.1 Indexing and Rotational Interleaving
	FIGURE 6. Example of R-NUCA clusters and Rotational Interleaving. The array of rectangles represents the tiles. The binary numbers in the rectangles denote the tile’s RID. The lines surrounding some of the tiles are clusters.

	4.2 Placement
	4.3 Page Classification
	4.4 Extensions

	5 Evaluation
	5.1 Methodology
	FIGURE 7. Total CPI breakdown for L2 organizations. CPI is normalized to the private organization.

	5.2 Classification Accuracy
	5.3 Impact of R-NUCA Mechanisms
	FIGURE 8. Impact of L2 coherence elimination. The CPI is normalized to the total CPI of the private organization.
	FIGURE 9. Impact of local allocation of private data. The CPI is normalized to the total CPI of the private organization.
	FIGURE 10. CPI contribution of L2 instruction accesses. The CPI is normalized to the total CPI of the private scheme.

	5.4 Performance Improvement
	5.5 Impact of Technology
	FIGURE 11. CPI breakdown with size-1 and size-4 instruction clusters. The CPI is normalized to size-1.

	6 Related work
	FIGURE 12. Performance Improvement. Speedup over the private organization for private-averse workloads, and over the shared organization for shared-averse workloads.

	7 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

