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Introduction:
Selective Search

Selective search is a recent distributed search architecture
• During indexing, split the corpus into small, topical index shards
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Selective search is a recent distributed search architecture
• During indexing, split the corpus into small, topical index shards

• Use resource selection to pick shards for query q
1. Rank the index shards
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Introduction:
Selective Search

Selective search is a recent distributed search architecture
• During indexing, split the corpus into small, topical index shards

• Use resource selection to pick shards for query q
1. Rank the index shards
2. Decide how many shards to search
3. Search the (few) selected shards

Usually evaluated using an early precision metric
• P@10, NDCG@30
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Introduction:
Motivation

The number of shards selected impacts performance
• Selecting too few:    Hurts document retrieval accuracy
• Selecting too many: Costly and inefficient

Previous shard selection algorithms include:
• ReDDE, L2RR: Static cutoff
• Taily, Rank-S:   Tightly linked with shard ranking
• ShRkC:              Independent of shard ranker
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Introduction:
Motivation

Prior studies focus on early precision in selective search
• Multi-stage ranking pipelines are now common
• As an early stage retrieval step, recall should be a priority
• Later rankers in the pipeline will re-rank these documents
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Predicting Shard Ranking Cutoffs

Problem: Given query q, predict the shard cutoff k
Solution: Treat this as a regression problem
• Easy to tune for early precision or high recall

Key elements to be addressed
• Features
• Learning algorithms
• Training data

Talks are short this year, so this talk skips many details
• See the paper for details
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Predicting Shard Ranking Cutoffs:
Features

147 (query, corpus) features
• Typical query-difficulty features
• Eg., Variance of similarity scores

42 shard distribution features
• Characterize the different score distribution across shards
• Eg., Entropy of similarity scores across shards
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Predicting Shard Ranking Cutoffs:
Learning Algorithms

Algorithms
• Quantile Regression (QR)

– Often better for predicting                                             
skewed distributions

– Modification of RF that                                                   
estimates conditional                                                        
median

– Parameterized by !
• Random Forest (RF) regressor

– Less effective, so not covered in the talk
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
1.  Create an exhaustive search ranking (rd,e)
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
1.  Create an exhaustive search ranking (rd,e)
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

What is the ‘right’ number of shards k to search for query q?
2. Find a cutoff that produces a similar selective search ranking
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Predicting Shard Ranking Cutoffs:
Training Data (Gold Standard)

Vary the definition of ‘close enough’ to satisfy different goals
Early Precision

Overlap in top 100 documents
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Experimental Methodology

Datasets:  ClueWeb09-B (Gov2 shown in paper)

Metrics
• Early-precision: P@5, NDCG@10, Overlap@100
• High-recall: MAP@1000, RBP (p=0.95), Overlap@5000
• Efficiency: CRES (total cost), CLAT (latency)
• Agreement: Pearson (PCC), Mean Absolute Error (MAE)

Baselines
• Shard ranking: Taily, Rank-S, ReDDE, L2RR
• Shard cutoff: Taily, Rank-S, ShRkC
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Experiment 1:
Cutoff Prediction Comparisons

RQ1: How accurate are existing shard cutoff predictions?

Lower MAE & higher PCC:  Better at predicting k

The Learned predictor is best under both scenarios
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Experiment 1:
Cutoff Prediction Comparisons

RQ3: Are ranker-independent cutoff predictions effective?

Lower MAE & higher PCC:  Better at predicting k

Ranker-independent cutoff predictions can be effective
• QR is, but ShRkC is not
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Experiment 1:
Cutoff Prediction Comparisons

Shard cutoff biases
• Closer to the ‘Label’ curve is desired
• Taily tends to under predict
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Experiment 1:
Cutoff Prediction Comparisons

Shard cutoff biases
• Closer to the ‘Label’ curve is desired
• Taily tends to under predict
• Rank-S and ShRkC tend to over predict
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Experiment 1:
Cutoff Prediction Comparisons

Shard cutoff biases
• Closer to the ‘Label’ curve is desired
• Taily tends to under predict
• Rank-S and ShRkC tend to over predict
• QR is the most accurate
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Experiment 2:
Shard Ranking Comparisons

RQ2: How accurate are existing shard rankings?
• Examine shard ranking & cutoff prediction separately

– Usually these problems are conflated
• In this experiment, each ranker uses a fixed number of shards

– Given by ‘Label’ (the gold standard)
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Experiment 2:
Shard Ranking Comparisons

• L2RR is the most accurate shard ranker
• Rankers tend to select smaller (Taily) or larger (L2RR) shards 

– All rankers searched the same number of shards
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Experiment 3:
Precision vs Recall

Up is more accurate
Left is more efficient

Goal is to be close    
to !", $

QR’s % enables 
tuning efficiency      
vs effectiveness 
tradeoff
• & = 0.45 works well
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Experiment 3:
Precision vs Recall

Up is more accurate
Left is more efficient

Goal is to be close    
to !", $

QR’s % enables 
tuning efficiency      
vs effectiveness 
tradeoff
• & = 0.45 works well
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Experiment 4:
Training Labels Comparisons

RQ5: Should the shard cutoff prediction be trained for a specific 
resource selection algorithm?
• Any shard ranking can generate training data for the QR predictor

– E.g., Exhaustive search (previous experiments), Taily, L2RR, ..

Conclusion
• Training with rankings based on exhaustive search produces more 

aggressive cutoffs
• Aggressive cutoffs work well with strong rankers (L2RR) 
• Weaker rankers (Taily) benefit from ranker-specific training
• See the paper for details
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Conclusions

Shard ranking & cutoff prediction should be studied separately
• Distinct problems, separate sources of error

Cutoff prediction can be done well by quantile regression
• Query difficulty and shard distribution features
• Tune for early-precision or high-recall requirements as needed
• Use with any shard ranker

Selective search can achieve high-recall
• 70% agreement with exhaustive search rankings at depth 5000 

can be attained with 16-18% of the computational effort

© 2018, Hafeezul Rahman Mohammad37



Thank you!

Questions?
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