Dynamic Shard Cutoff Prediction for Selective Search

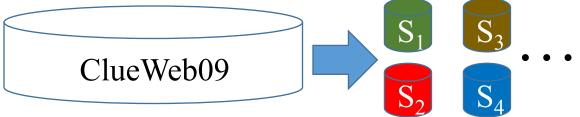
Hafeezul Rahman Mohammad Keyang Xu Jamie Callan

Carnegie Mellon University Language Technologies Institute

J. Shane Culpepper

Selective search is a recent distributed search architecture

• During indexing, split the corpus into small, topical index shards



Selective search is a recent distributed search architecture

• During indexing, split the corpus into small, topical index shards

 S_1

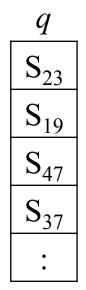
 \widetilde{S}_{2}

S₃

 S_{A}

- Use resource selection to pick shards for query q
 - 1. Rank the index shards

ClueWeb09



Selective search is a recent distributed search architecture

• During indexing, split the corpus into small, topical index shards

 S_1

S

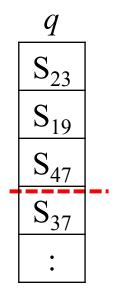
S₃

 S_{A}

- Use resource selection to pick shards for query q
 - 1. Rank the index shards

ClueWeb09

2. Decide how many shards to search



Selective search is a recent distributed search architecture

• During indexing, split the corpus into small, topical index shards

 S_1

S-

S₃

 S_{Λ}

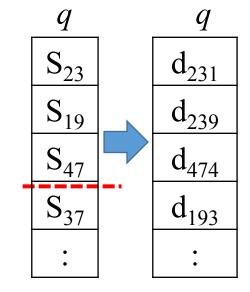
- Use resource selection to pick shards for query q
 - 1. Rank the index shards

ClueWeb09

- 2. Decide how many shards to search
- 3. Search the (few) selected shards

Usually evaluated using an early precision metric

• P@10, NDCG@30



Introduction: Motivation

The number of shards selected impacts performance

- Selecting too few: Hurts document retrieval accuracy
- Selecting too many: Costly and inefficient

Previous shard selection algorithms include:

- ReDDE, L2RR: Static cutoff
- Taily, Rank-S: Tightly linked with shard ranking
- ShRkC: Independent of shard ranker

Introduction: Motivation

Prior studies focus on early precision in selective search

- Multi-stage ranking pipelines are now common
- As an early stage retrieval step, recall should be a priority
- Later rankers in the pipeline will re-rank these documents

Predicting Shard Ranking Cutoffs

Problem: Given query q, predict the shard cutoff kSolution: Treat this as a regression problem

• Easy to tune for early precision or high recall

Key elements to be addressed

- Features
- Learning algorithms
- Training data

Talks are short this year, so this talk skips many details

• See the paper for details

Predicting Shard Ranking Cutoffs: Features

147 (query, corpus) features

- Typical query-difficulty features
- Eg., Variance of similarity scores

42 shard distribution features

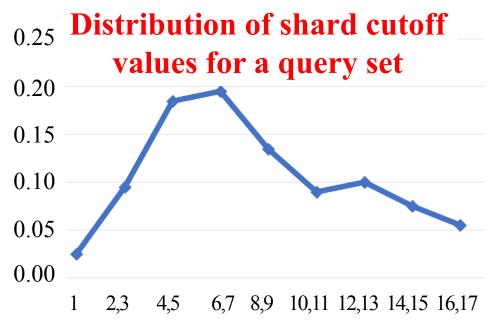
- Characterize the different score distribution across shards
- Eg., Entropy of similarity scores across shards

Predicting Shard Ranking Cutoffs: Learning Algorithms

Algorithms

- Quantile Regression (QR)
 - Often better for predicting skewed distributions
 - Modification of RF that estimates conditional median
 - Parameterized by τ
- Random Forest (RF) regressor

– Less effective, so not covered in the talk



What is the 'right' number of shards k to search for query q?

What is the 'right' number of shards k to search for query q?

1. Create an exhaustive search ranking $(r_{d,e})$

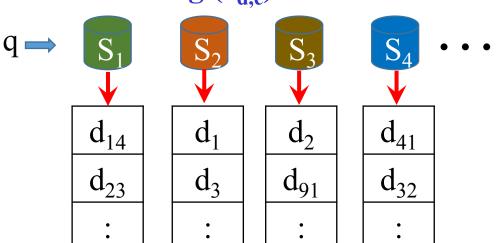
Search <u>all</u> shards $q \rightarrow S_1$ S_2 S_3 $S_4 \cdots$

What is the 'right' number of shards k to search for query q?

1. Create an exhaustive search ranking $(r_{d,e})$

Search <u>all</u> shards

Document rankings are returned



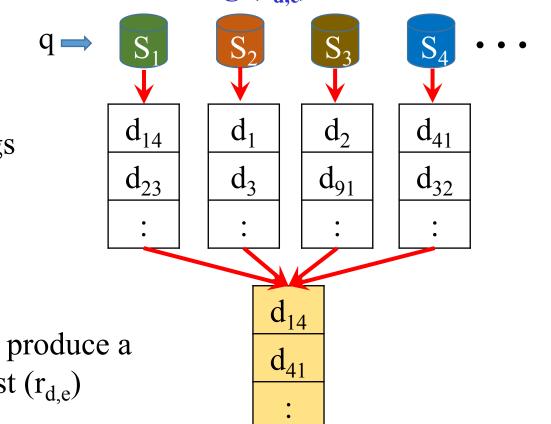
What is the 'right' number of shards k to search for query q?

1. Create an exhaustive search ranking $(r_{d,e})$

Search <u>all</u> shards

Document rankings are returned

Merge rankings to produce a final ranked list (r_{d.e})



What is the 'right' number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards

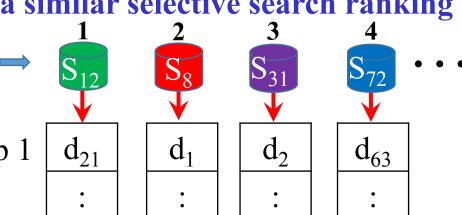
What is the 'right' number of shards k to search for query q?

q

2. Find a cutoff that produces a similar selective search ranking

Rank the shards

Same document rankings as Step 1

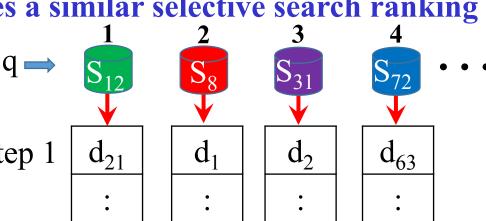


What is the 'right' number of shards k to search for query q?

2. Find a cutoff that produces a similar selective search ranking

Rank the shards

Same document rankings as Step 1



Iterate over potential cutoffs

What is the 'right' number of shards k to search for query q? 2. Find a cutoff that produces a similar selective search ranking Rank the shards q $\mathbf{D}\mathbf{o}$ d_{21} d₆₃ Same document rankings as Step 1 d_1 d_2 Merge k=1 rankings to produce a d₂₁ final ranked list (r_{dk}) d₉₉ r_{d,k}

What is the 'right' number of shards k to search for query q? 2. Find a cutoff that produces a similar selective search ranking Rank the shards q d_{21} d₆₃ Same document rankings as Step 1 d_1 d_2 Merge k=1 rankings to produce a d_{14} final ranked list $(r_{d,k})$ d₄₁ d_{99} If Close_Enough $(r_{d,k}, r_{d,e})$ Stop & report cutoff = 1r_{d,k} r_{d,e}

What is the 'right' number of shards k to search for query q? 2. Find a cutoff that produces a similar selective search ranking Rank the shards q d_{21} d₆₃ Same document rankings as Step 1 d_1 d_2 Merge k=2 rankings to produce a d_{14} \mathbf{a}_{21} final ranked list $(r_{d,k})$ d₄₁ d If Close_Enough $(r_{d,k}, r_{d,e})$ Stop & report cutoff = 2r_{d,e} $r_{d,k}$

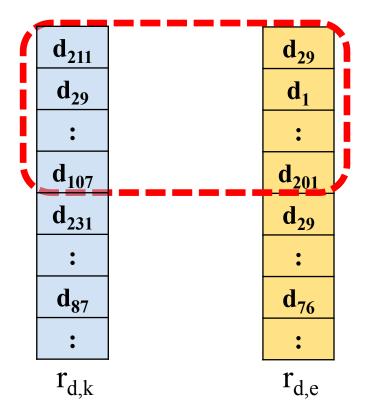
What is the 'right' number of shards k to search for query q? 2. Find a cutoff that produces a similar selective search ranking Rank the shards q d_{21} d₆₃ Same document rankings as Step 1 d_1 d_2 Merge k=3 rankings to produce a d_{14} final ranked list $(r_{d,k})$ d₄₁ d_{21} If Close_Enough $(r_{d,k}, r_{d,e})$ Stop & report cutoff = 3r_{d,e} r_{d,k}

What is the 'right' number of shards k to search for query q? 2. Find a cutoff that produces a similar selective search ranking Rank the shards q d_{21} d₆₃ Same document rankings as Step 1 d_1 d_2 Continue until a good cutoff is found d₁₄ \mathbf{a}_{2} or k=16 (cap for outlier queries) d₄₁ d_{21} r_{d,e} $r_{d,k}$

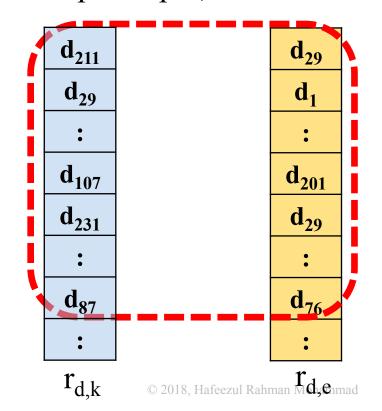
Vary the definition of 'close enough' to satisfy different goals **High Recall**

Early Precision

Overlap in top 100 documents



Overlap in top 1,000 documents



Experimental Methodology

Datasets: ClueWeb09-B (Gov2 shown in paper)

Metrics

- Early-precision: P@5, NDCG@10, Overlap@100
- High-recall: MAP@1000, RBP (*p*=0.95), Overlap@5000
- Efficiency: C_{RES} (total cost), C_{LAT} (latency)
- Agreement: Pearson (PCC), Mean Absolute Error (MAE)

Baselines

- Shard ranking: Taily, Rank-S, ReDDE, L2RR
- Shard cutoff: Taily, Rank-S, ShRkC

RQ1: How accurate are existing shard cutoff predictions? **ClueWeb09-B**

	Early-Precision Rank-S Taily ShRkC QR					High-Recall				
]	Rank-S	Taily	ShRkC	QR	Rank-S	Taily	ShRkC	QR		
MAE	1.31	1.34	2.99	1.14	2.91	2.84	4.85	1.94		
PCC	0.37	0.34	0.26	0.44	0.38	0.39	0.28	0.64		

Lower MAE & higher PCC: Better at predicting k

The Learned predictor is best under both scenarios

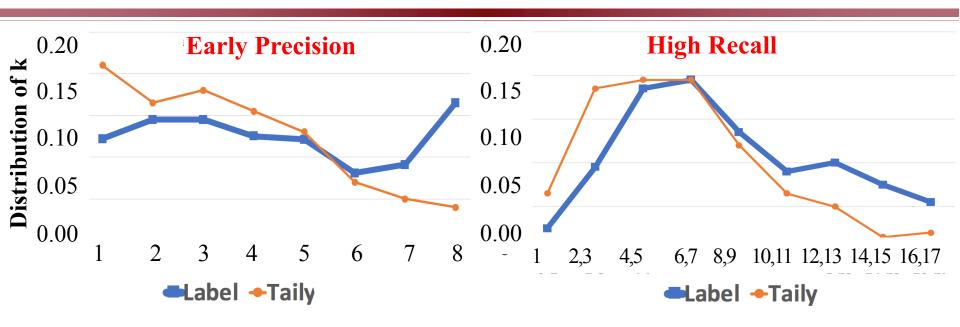
RQ3: Are ranker-independent cutoff predictions effective? **ClueWeb09-B**

Early-Precision					High-Recall Rank-S Taily ShRkC QR				
	Rank-S	Taily	ShRkC	QR	Rank-S	Taily	ShRkC	QR	
MAE	1.31	1.34	2.99	1.14	2.91	2.84	4.85	1.94	
PCC	0.37	0.34	0.26	0.44	0.38	0.39	0.28	0.64	

Lower MAE & higher PCC: Better at predicting k

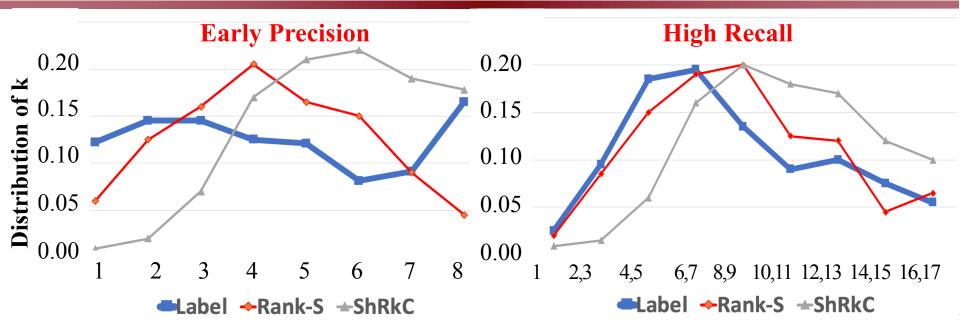
Ranker-independent cutoff predictions can be effective

• QR is, but ShRkC is not



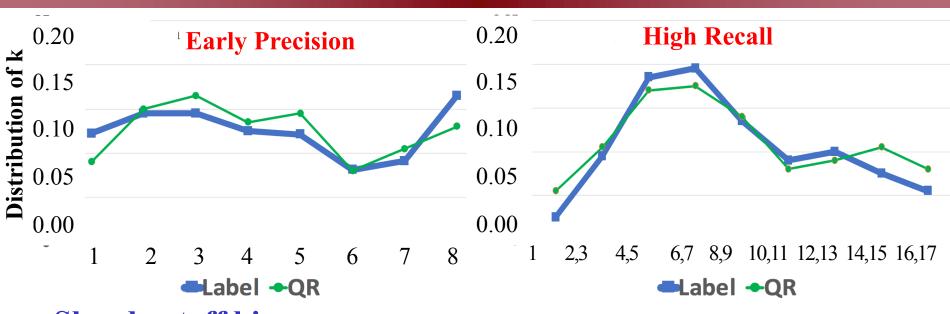
Shard cutoff biases

- Closer to the 'Label' curve is desired
- Taily tends to under predict



Shard cutoff biases

- Closer to the 'Label' curve is desired
- Taily tends to under predict
- Rank-S and ShRkC tend to over predict



Shard cutoff biases

- Closer to the 'Label' curve is desired
- Taily tends to under predict
- Rank-S and ShRkC tend to over predict
- QR is the most accurate

Experiment 2: Shard Ranking Comparisons

RQ2: How accurate are existing shard rankings?

- Examine <u>shard ranking</u> & <u>cutoff prediction</u> separately - Usually these problems are conflated
- In this experiment, each ranker uses a fixed number of shards – Given by 'Label' (the gold standard)

Experiment 2: Shard Ranking Comparisons

Ranking	MAP	RBP,0.95	O@5000	$ C_{RES} $	C_{LAT}	
Taily	.180	.261 (.339)	.599	.811	.187	Smaller
Rank-S	.181	.279 (.349)	.612	.811	.190	shards
ReDDE	.182	.281 (.345)	.618	.853	.198	Langen
L2RR	.196	.293 (.304)	.626	.896	.199	
r _{s,e}	.202	.301 (.286)	.709	.850	.195	shards
Exhaustive	.202	.292 (.309)	-	5.24	.330	

- L2RR is the most accurate shard ranker
- Rankers tend to select smaller (Taily) or larger (L2RR) shards

 All rankers searched the same <u>number</u> of shards

Experiment 2: Shard Ranking Comparisons

	Early-Precision Oriented Accuracy Efficiency					
Ranking	P@5	NDCG@10	O@100	$ C_{RES} $	C _{LAT}	
Taily	.370	.214	.623	.508	.180	Smaller
Rank-S	.375	.229	.673	.517	.178	shards
ReDDE	.386	.229	.708	.551	.190	
L2RR	.389	.234	.734	.560	.189	Larger
r _{s,e}	.409	.247	.818	.534	.187	shards
Exhaustive	.390	.240	-	5.24	.330	

- L2RR is the most accurate shard ranker
- Rankers tend to select smaller (Taily) or larger (L2RR) shards

 All rankers searched the same <u>number</u> of shards

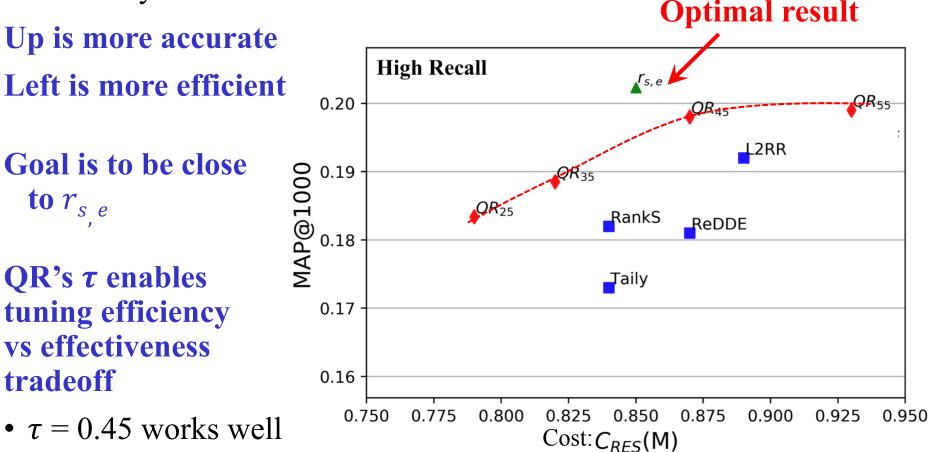
Experiment 3: Precision vs Recall

RQ4: How do the competing goals of precision and recall affect efficiency-effectiveness tradeoff?

Optimal result Up is more accurate **High Recall** r_{s,e} Left is more efficient QR_{55} 0.20 QR_{45} L2RR Goal is to be close MAP@1000 0.19 QR_{35} to r_{se} QR₂₅ RankS ReDDE 0.18 QR's τ enables Taily tuning efficiency 0.17 vs effectiveness 0.16 tradeoff 0.775 0.800 0.850 0.750 0.825 0.875 0.900 0.925 0.950 • $\tau = 0.45$ works well Cost: $C_{RES}(M)$

Experiment 3: Precision vs Recall

RQ4: How do the competing goals of precision and recall affect efficiency-effectiveness tradeoff?



Experiment 3: Precision vs Recall

RQ4: How do the competing goals of precision and recall affect efficiency-effectiveness tradeoff? Optimal result

Up is more accurate **Early Precision** Left is more efficient 0.25 QR_{45} 0.24 0DCC 0.23 0.23 Goal is to be close RankS to r_{se} ReDDE QR's τ enables OR Taily 0.22 tuning efficiency vs effectiveness 0.21 tradeoff 0.450 0.425 0.500 0.525 0.550 0.575 0.600 0.400 0.475 • $\tau = 0.45$ works well Cost: $C_{RES}(M)$

Experiment 4: Training Labels Comparisons

RQ5: Should the shard cutoff prediction be trained for a specific resource selection algorithm?

 Any shard ranking can generate training data for the QR predictor – E.g., Exhaustive search (previous experiments), Taily, L2RR, ...

Conclusion

- Training with rankings based on exhaustive search produces more aggressive cutoffs
- Aggressive cutoffs work well with strong rankers (L2RR)
- Weaker rankers (Taily) benefit from ranker-specific training
- See the paper for details

Conclusions

Shard ranking & cutoff prediction should be studied separately

• Distinct problems, separate sources of error

Cutoff prediction can be done well by quantile regression

- Query difficulty and shard distribution features
- Tune for early-precision or high-recall requirements as needed
- Use with any shard ranker

Selective search can achieve high-recall

• 70% agreement with exhaustive search rankings at depth 5000 can be attained with 16-18% of the computational effort

Thank you!

Questions?