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ABSTRACT
Selective search architectures use resource selection algorithms

such as Rank-S or Taily to rank index shards and determine how

many to search for a given query. Most prior research evaluated

solutions by their ability to improve efficiency without significantly

reducing early-precision metrics such as P@5 and NDCG@10.

This paper recasts selective search as an early stage of a multi-

stage retrieval architecture, which makes recall-oriented metrics

more appropriate. A new algorithm is presented that predicts the

number of shards that must be searched for a given query in order

to meet recall-oriented goals. Decoupling shard ranking from decid-

ing how many shards to search clarifies efficiency vs. effectiveness

trade-offs, and enables them to be optimized independently. Exper-

iments on two corpora demonstrate the value of this approach.
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1 INTRODUCTION
Selective search is a distributed search architecture that avoids

searching the entire corpus for each query. When the index is built,

it is divided into small, topically-oriented shards. During retrieval,

first shards (or resources) are ranked by their likelihood of returning
documents relevant to the query, and then only the most query-

relevant shards are searched. The accuracy and efficiency of the

selective search architecture depends upon the number of shards

that are searched (the cutoff ). Searching too few shards harms

accuracy, while searching too many shards harms efficiency.

While a large body of work now exists around this technol-

ogy [16, 19–21, 23–25], many interesting problems remain. In this

paper we focus on two related issues. First, distributed search is in-

creasingly viewed as an early-stage retrieval process where the task

is to efficiently collect as many possibly relevant documents before
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applying more expensive learning-to-rank algorithms [5, 28, 37, 44].

As such, optimizing for early precision metrics such as ERR [8] and

NDCG@10 [17] during selective search may not be desirable. Sec-

ond, the ideal number of shards to search can depend heavily on the

resource selection algorithm, the desired search type (recall-driven

or early-precision-driven), and the specific query.

In spite of the importance of selecting the right number of

shards with respect to targeted evaluation, this aspect of selective

search has not been studied extensively by prior research. Some ap-

proaches treat the cutoff as a parameter to be tuned for a query set;

that is, the same value is used for every query [2, 4, 13, 23, 40, 41].

Other approaches treat it as part of the resource selection prob-

lem, where the result is a shard ranking and a cutoff. For example,

SUSHI [45] selects shards that are expected to have documents in

the top-n of the final ranking, Taily [1] sets the cutoff based on an

estimate of the minimum number of relevant documents in each

shard, and Rank-S [25] sets the cutoff using a rank-based decay

function of the shard’s relevance score. Query-based cutoffs pro-

duced by algorithms such as SUSHI, Taily, and Rank-S are appealing,

however there has been little study of the prediction accuracy.

Another limitation in past work is the assumption that single-

pass retrieval using BM25 or language models and focusing on

early precision is sufficient. In this scenario, only a few shards

are required for most queries, and less accurate cutoff predictions

tend to not hurt efficiency. However, complex multi-stage ranking

pipelines are now common [9, 37]. If selective search is used in a

pipeline for early-stage retrieval, recall should be a priority [31], and

maximizing for recall often means searching more shards initially.

Query-specific shard cutoff prediction – the problem of predicting

the number of shards to search for each query – depends on the

size of the desired result set. Thus, we distinguish between early
precision and high recall search requirements. An early precision
scenario measures accuracy in the first few ranked documents

(e.g., 1 . . . 10), and thus is likely to be more efficient because fewer

shards are searched. This is the scenario studied most often in prior

work. In contrast, a high recall scenario attempts to find all relevant

documents for a query, and can require thousands of documents to

be returned. Thus, it is likely to require more shards to be searched.

A robust shard cutoff prediction method should be effective, stable,

and usable for both early precision and high recall search scenarios.

This paper presents a new, feature-based approach to query-

specific shard cutoff prediction that is easily tuned for early preci-

sion or high recall, and can be used in conjunctionwith any resource
selection algorithm. The research and experiments presented in this

paper are designed to answer the following five research questions.
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• RQ1: How accurate are existing shard cutoff predictions?

• RQ2: How accurate are existing shard rankings?

• RQ3: Are ranker-independent cutoff predictions effective?

• RQ4: How do the competing goals of precision-oriented and

recall-oriented selective search affect tradeoffs between efficiency

and effectiveness?

• RQ5: Is it necessary or useful for the shard cutoff prediction al-

gorithm to be trained for a specific resource selection algorithm?

The next section reviews prior research on selective search, re-

source ranking, and measuring the similarity of search results. Sec-

tion 3 describes our new approach to predicting shard cutoffs. Sec-

tion 4 describes our experimental methodology and evaluation.

Section 5 reports experimental results. Section 6 concludes.

2 RELATEDWORK
Two types of prior research relate to query-specific shard cutoff

prediction. Resource selection algorithms rank shards for a query; al-

gorithms often used with selective search also make query-specific

decisions about how many shards to search. Rank similarity mea-

sures are also related, since the goal of selective search is to produce

rankings equivalent to exhaustive search, albeit with less effort.

2.1 Resource Selection for Selective Search
Resource selection (resource ranking) estimates the relevance of

index shards for a specific query, and imposes an ordering on shard

traversal. There are three general approaches to resource selection

for selective search: term-based, sampled-based and feature-based.
Term-based methods use summary term statistics to model each

shard. These are used to estimate the shard’s relevance to a query [4,

15]. For example, Taily [1] uses the mean and variance of term fre-

quency (TF ) within a shard to estimate the number of its documents

that would be highly-ranked by an exhaustive search system; shards

that are likely to contain more than a specified number number of

highly-ranked documents (e.g., v = 50) are selected.

Sample-based methods combine samples of documents from

each shard into a common index, known as a centralized sample

index (CSI). The query is run against the CSI. Each top-ranked

document is treated as a vote for the shard from which it was sam-

pled. Algorithms such as ReDDE [41], SUSHI [45], CRCS [40] and

Rank-S [25] differ primarily in how they conduct voting. Markov

and Crestani [33] and Sener et al. [39] provide detailed analyses of

these algorithms. The ReDDE score for shard R is nR ·wR , where

nR is the number of documents that R contributed to the top-n of

the CSI ranking, and wR is the ratio of shard size to sample size.

CRCS considers the rank of the document in the CSI ranking, so

that documents at higher ranks contribute more than those at lower

ranks. Rank-S uses an exponential function, scoreCSI (q,di ) · B−i ,
to discount the contribution of the i ·th ranked document from the

CSI ranking, where B controls the rate of decay. Rank-S selects all

shards with scores above a threshold.

Feature-based methods use a variety of features, such as sum-

mary statistics, the scores of term-based algorithms, the scores of

sample-based algorithms, the query’s category, and presence of

certain terms, to estimate a shard’s relevance to the query. Binary

classification [2], regression models [7], and learning-to-rank [12]

have been used to learn the models.

Usually the number of shards to search is either a static param-

eter [2, 12, 41] or is tightly-integrated with the resource selection

algorithm [1, 25]. One exception is ShRkC [22], a feature-based,

regression-based shard cutoff predictor. Although independent of

any resource selection algorithm, ShRkC is trained using data from

a desired resource selection algorithm. As in most work on selective

search, it was trained and evaluated for early-precision metrics.

2.2 Rank Similarity
Prior studies have also explored how to measure the similarity

between two ranked result lists. These approaches can be used

to compare search results without explicitly requiring relevance

judgments [3, 14, 18, 26, 34, 42]. More recently, Webber et al. [46]

proposed Rank-Biased Overlap (RBO), which calculates the expected
average overlap that the user observes in comparing the two lists.

The key difference between RBO and previous approaches is that

a user bias to higher ranking documents is incorporated, and the

lists being compared can be disjoint. This means the metric can

compare incomplete rankings. This idea was generalized by Tan

and Clarke [43] who showed that the idea can be used for any

utility based evaluation metric. The resulting family of metrics,

called Maximized Effectiveness Difference (MED), can be computed

using any gain function, and target specific metrics such as ERR [8],

DCG [17], or RBP [36]. Unlike previous approaches, MED directly

transfers assumptions about user behavior from any chosen ef-

fectiveness measure to maximize a similarity score that serves as

the corresponding rank similarity measure. For example, MEDRBP

maximizes: S(A)−S(B) = (1−ϕ)(
∑K
i=1

(ai −bi )ϕ
i−1+

∑∞
i=K+1

ϕi−1),

where A and B represent two ranking lists, K stands for the maxi-

mum depth for calculation and ϕ is the user persistence for RBP.

In this work, we use MEDRBP in a manner originally described by

Clarke et al. [10] to measure stagewise loss between an exhaustive

run and the subset of documents aggregated by selective search, as

this allows us to experiment with larger sets of queries that do not

have relevance judgments associated with them.

3 QUERY-SPECIFIC SHARD CUTOFF
PREDICTION

Query-specific shard cutoff prediction can be framed as a machine

learning problem: Given a query q and a set of index shards S ,
train a model that can predict the number of shards K that should

be searched to optimize a given metric. This framework requires

defining a set of features that will provide clues about the number of

shards to search for query q; obtaining training data; and selecting a
machine learning algorithm. The metric to be optimized is assumed

to be related to task requirements, for example, NDCG@10 (an early
precision scenario) or MAP (a high recall scenario), and thus outside
of our control. Among the different requirements, prior research

provides the least guidance about the training data.

3.1 Features
The features used in this research are motivated by two ideas about

what affects the number of shards to search for a query. The first

idea is based on the premise that difficult queries need to search



Table 1: Term statistics used to generate query-dependent
features. Statistics 2-8 are computed for all 7 similarity mea-
sures. Each term has 51 of these features in total.

Term Statistics

1. Number of documents containing the term

2. Maximum similarity score

3. First quartile similarity score

4. Third quartile similarity score

5. Arithmetic mean of similarity scores

6. Harmonic mean of similarity scores

7. Median of similarity scores

8. Variance of similarity scores

9. Geometric mean aggregation of all 49 scores in 2-8

Table 2: The 147 query-dependent features. The numbers in
brackets show the number of features for that type. Feature
types 2-8 are computed for all 7 similarity measures using
term statistics from Table 1. Interquartile range is the differ-
ence between the first and third quartile similarity score.

Query Features

1. Query length (1)

2. Arithmetic mean of document frequency (1)

3. Arithmetic mean of Geometric mean aggregation (1)

4. Arithmetic mean of maximum scores (7)

5. Arithmetic mean of median score (7)

6. Arithmetic mean of mean scores (14)

7. Arithmetic mean of score variances (7)

8. Arithmetic mean of score interquartile ranges (7)

9. For each feature in Table 1, the minimum across terms (51)

10. For each feature in Table 1, the maximum across terms (51)

more shards while simpler queries do not. The second idea is that

the number of shards being search also depends on the distribution

of the similarity scores of a query with the documents across all

the shards. Thus, two different types of features were investigated.

Corpus features describe how well query q matches the corpus.

We incorporate 147 corpus features into our model which have

previously been used for query difficulty prediction and other pre-

retrieval tasks [6, 11, 30, 32]. These features describe query charac-

teristics (e.g. length), and aggregated statistics for each query term

(e.g. maximum score, harmonic/arithmetic mean/median score, and

geometric mean) from a range of similarity functions (TF·IDF, BM25,

query likelihood, term probability, Bose-Einstein, DPH, and DFR).

When the index is constructed, features are easily pre-computed for

each term. Table 1 outlines the term-specific features used in this

work. During retrieval, features for query terms are fetched from a

term dictionary and combined to produce simple, query-specific

features. Table 2 shows the query-specific features used.

Shard-distribution features characterize the distribution of a

shard-specific feature across the set of shards. For each term, three

aggregated shard-level statistics (maximum, mean, and variance)

are constructed using a range of similarity functions as above

(TF·IDF, BM25, query likelihood, term probability, Bose-Einstein,

DPH and DFR). For a given query, we find the arithmetic mean of

these term-level statistics for each shard and then normalize the

Table 3: The 42 shard-distribution features. The numbers in
brackets show the number of features for that type.

Shard Distribution Features

1. Entropy of arithmetic mean of mean scores across shards (7)

2. Entropy of arithmetic mean of maximum scores across shards (7)

3. Entropy of arithmetic mean of score variances across shards (7)

4. KL-Divergence of arithmetic mean of mean scores with a uniform

reference distribution (7)

5. KL-Divergence of arithmetic mean of maximum scores with a

uniform reference distribution (7)

6. KL-Divergence of arithmetic mean of score variances with a

uniform reference distribution (7)

mean scores to form a valid probability distribution across all of the

shards. The cross-entropy and KL-Divergence of these distribution

scores across the set of shards form our feature set. We use a total

of 42 shard distribution features (Table 3). We also investigated

shard distribution features based on the maximum, cross-entropy,

and KL-Divergence of Taily scores across shards. They performed

about the same as the features in Table 3, and combining the two

sets provided little gain, thus we omit those results. We surmise

that the two sets of feature captured the same information.

These shard-distribution features provide better signals to the

learning algorithm when changing the search goal from early-

precision to recall-oriented.When the distribution is heavily skewed,

the majority of the relevant documents will be concentrated into a

few shards, and hence fewer shards can be searched; but when it is

less skewed or more uniform, relevant documents will be scattered

across many shards, and more shards should be searched.

3.2 Training Data
Typically selective search systems are compared to exhaustive search
systems that search all shards. The goal of selective search is to

deliver results that are at least as accurate, but at a lower (typically

much lower) computational cost. In principle, it is possible for selec-

tive search to be more accurate than exhaustive search, but in prior

research this behavior was observed only occasionally and only

at early precision cut-offs (e.g. 1 . . . 5). Outperforming exhaustive

search in terms of effectiveness appears to be possible, but remains

an elusive goal in practice. In this work, exhaustive search results

are treated as “gold standard” results. If we are able to achieve the

same effectiveness as exhaustive search while searching only a

subset of the collection, efficiency is improved.

Here, a training instance is a tuple (Φ(q, S),K), where Φ(q, S) is a
set of features extracted for query q and a set of shards S , and K is

the number of shards to search. The value of K is determined by a

three-step process. First, an exhaustive search for query q retrieves

n documents. Second, a resource-selection algorithm produces a

shard ranking for q. Third, the documents returned are analyzed to

determine the number of shardsK that must be searched to produce

results comparable to the reference – exhaustive search. A complete

discussion of exhaustive search is deferred until Section 4 because

it is an experimental detail, and any ideal document ranking over

the entire collection can be used in practice.

Shard Ranking. Shards can be ranked by resource selection algo-

rithms such as ReDDE, Taily, and Rank-S. However, using a specific



Find_k (rd,e , rs , ϵ , Kmax ):

# rd,e : A document ranking produced by exhaustive search

# rs : A ranking of shards

# ϵ : Maximum acceptable difference between doc rankings

# Kmax : A maximum value for K
K = 1

while (K ≤ Kmax ) {

Use the top K shards in rs to create a document ranking rd,K
if (difference (rd,K , rd,e ) < ϵ)
break;

Increment K
return K

Figure 1: Algorithm to calculate the query-specific shard cut-
off K .
resource selection algorithm makes the training data sensitive to

that algorithm, which may have unintended consequences. For

example, different algorithms produce shard rankings of different

lengths. Taily ranks all shards; however, ReDDE, Rank-S, and other

sample-document algorithms rank only the shards that contributed

matching documents to a centralized sample index. The ranking

may not contain all of the K shards necessary to produce a docu-

ment ranking comparable to exhaustive search.

We define an algorithm that generates a shard ranking compat-

ible with an exhaustive search document ranking. Given query q
and exhaustive search ranking rd,e , the weight of shard s is:

Wq,s =

depth∑
i=1

Is
(
rd,e [i]

)
∗ pi−1

where Is indicates whether document rd,e [i] is located in shard s ,
p is the user persistence from MEDRBP, and depth is the maximum

depth for computing weights. We denote a ranking of shards by

Wq,s – a ranking compatible with exhaustive search – as rs,e . The
value ofp and depth depend on the evaluation metric being targeted.

Some queries require many shards to be searched in order to

achieve aMEDRBP ≤ ϵ . This occurs when index partitioning scat-

ters a topic across many shards rather than concentrating it in a few

shards, or when the query and relevant documents have little or

no overlapping vocabulary. Usually the percentage of such queries

is small; however they can have a disproportionate effect on the

learning algorithm because the cutoff labels (K) for these queries
differ so dramatically from the labels for other training data. In

order to minimize the effect of such outliers, we set Kmax = 16 in

our recall-driven experiments, and Kmax = 8 in our early-precision

experiments. These parameters were chosen empirically.

Query-Specific ShardCutoff. A shard cutoffK is calculated using

a simple iterative algorithm, shown in Figure 1. Beginning withK =
1, the top K shards are used to produce a document ranking. The

similarity of rK , the document ranking produced with K shards, is

compared to re , the exhaustive search document ranking produced

by searching all shards. If the two rankings are sufficiently similar,

or if a maximum has been reached, the algorithm stops and reports

K . Otherwise, K is incremented and the next value is tested. As rK
is always a subset of re , an efficient implementation creates rK by

removing from re documents that are in unselected shards.

The similarity between two search lists, rd,K and rd,e , is mea-

sured using MEDRBP. Clarke et al. [10] showed that the effectiveness

loss between multi-stage retrieval results can be accurately mea-

sured without explicitly requiring relevance judgments. A small

MEDRBP value indicates that rd,K agrees with exhaustive search

and large value denotes that they are different. A threshold ϵ is

used to find the label K . When the value of MEDRBP is lower than

the threshold ϵ , it indicates the K shards are sufficient to generate

a result comparable to exhaustive search. Previous experiments

showed that MEDRBP < 0.2 correlates with no important difference

between the two lists [10], so we use a target of ϵ < 0.2.

Summary. Training data is produced using only queries, exhaus-

tive search, a shard ranking, a target similarity metric, and a task-

specific similarity threshold that adjusts training data for shallow

or deep evaluation metrics. Relevance judgments for the queries

are not required, making it easier to produce large, task-specific

training data for this problem.

3.3 Learning Algorithms
The distribution ofK cutoffs is expected to be skewed since selective

search is effective at concentrating most topics in fewer shards than

random allocations. However, skewed data can be difficult for some

classes of machine learning algorithms, thus we explore the label

distribution effects on two classes of regression algorithms.

Random Forest (RF) regression [27] was used to directly pre-

dict the value of K . A random forest is a meta regressor that fits

multiple regression models on sub-samples of the data and uses av-

eraging to improve the predictive accuracy and control over-fitting.

Quantile Regression (QR) is a modification of random forest

regression that estimates the conditional median. This model better

handles outliers in heavy-tailed distributions. Since the distribution

of K can be heavily skewed for certain target metrics, this method

tends to work well empirically. The parameter used to tune quantile

regression is τ , which controls the relative importance of quantile

loss and standard regression loss.

4 EXPERIMENTAL METHODOLOGY
Dataset. Experiments were conducted on two widely used dataset

collections: ClueWeb09-B, which contains around 50 million web

pages and Gov2 which contains around 25 million documents from

the US government web domains. Stopwords were removed using

the default Indri stoplist. Stemming was done using the Krovetz

stemmer. For ClueWeb09-B, the spam documents were removed

during document retrieval using Waterloo spam scores and the

score threshold for filtering spam was set to 50.

Dataset Partitions. We used the QKLD-QInit partition defined by

Dai et al. [12], which divides ClueWeb09-B into 123 shards and the

Gov2 dataset into 199 shards of approximately equal size. These

partitionings represent the state-of-the-art for these datasets for

selective search, and are available on the authors’ website
1
.

Training andTestingQueries. For ClueWeb09-B, the 40,000 queries

from the 2009 TREC Million Query Track (MQT) were filtered and

used for training, and 200 queries from the 2009-2012 TREC Web

Track (WT) were used for testing. Note that the 200 WT queries are

contained in the original MQT query set, and were removed for the

experiments, and queries with no matches in the index were also

1
http://boston.lti.cs.cmu.edu/appendices/SIGIR2017-Zhuyun-Dai/



removed. In total, 1,140 queries were removed and the final training

corpus was a set of 38,600 queries. For Gov2, the 20, 000 queries

from the 2007 and 2008 TREC Million Query Track were used for

training, and 150 queries from the 2004 and 2005 TREC Terabyte

track were used for testing. As above, testing queries and queries

with no matches in the index were removed from the training set,

leaving a training corpus of 19, 800 queries.

Exhaustive Search (Gold Standard) Document Rankings. The
full index was searched by the Indri search engine. For ClueWeb09-

B, the unstructured querieswere transformed into structured queries

in the Indri query language using two techniques that have been

effective in TREC evaluations: multiple representations, and se-

quential dependency models (SDM) [35]. For example, the 3-term

query “ape bat cat” transformation is shown below.

#weight(
α1 #combine( ape.title bat.title cat.title )
α2 #combine( ape.inlink bat.inlink cat.inlink )
α3 #weight( β1 #combine( ape.body bat.body cat.body )

β2 #combine( #1( ape.body bat.body )
#1( bat.body cat.body ) )

β3 #combine( #uw8( ape.body bat.body )
#uw8( bat.body cat.body ) ) ) )

α1, α2 and α3 control the weight given to each representation. β1,β2

and β3 control the weight the sequential dependency model places

on matching anywhere in the body, in bigrams (#1), and in 8-term

unordered windows (#uw8) [35]. Parameters were determined us-

ing a parameter sweep on 200 queries from the TREC 2009-2012

Web Track topics for ClueWeb09-B. α1 = 0.20,α2 = 0.05,α3 =

0.75, β1 = 0.8, β2 = 0.1, and β3 = 0.1. Note that it is acceptable to

use test data to set the exhaustive search query template parame-

ters (α1, . . . , β3) because in an operational environment the query

template parameters would be carefully-tuned, fixed, and known.

For Gov2, the unstructured bag-of-words queries were trans-

formed into more effective structured queries by the sequential

dependency model (SDM) with parameters (0.85, 0.1, 0.05) [35]. Our

goal was to construct a competitive exhaustive baseline that is used

as the reference to measure an upper bound on the effectiveness

loss in the selective search environment.

Metrics. Early-precision experiments used P@5, NDCG@10, and

Overlap@100 to measure accuracy. Recall-oriented experiments

used Mean Average Precision (MAP) at rank 1000, RBP with p =
0.95 and Overlap@5000. P@5, NDCG@10, and MAP are included

to enable comparison with prior research. In general care should

be taken when evaluating ClueWeb collections deeply [29]. Af-

ter exploring many options, we found Overlap@n to be the best

metric for evaluating selective search in an early-stage retrieval

setting. Given rankings rd,e and rd,s of length n for exhaustive and

selective search, Overlap@n = Count(rd,e ∩ rd,s )/n. Results for
multiple queries are macro-averaged. We used this metric because

it measures (only) how well selective search mimics exhaustive

search. We assume that the first stage of retrieval is a filtering

step, where the goal is to quickly find a set of candidate documents

that will be reordered by later retrieval stages, for example, using

learning-to-rank. Thus, the order of documents does not matter.

Table 4: Differences between labels and predicted cutoffs in
Figures 2a-3b. Lower mean absolute error (MAE) and higher
Pearson correlation coefficient (PCC) indicate better predic-
tion.

ClueWeb09-B

Early-Precision High-Recall

Rank-S Taily ShRkC RF QR Rank-S Taily ShRkC RF QR

MAE 1.31 1.34 2.99 1.67 1.14 2.91 2.84 4.85 2.31 1.94
PCC 0.37 0.34 0.26 0.41 0.44 0.38 0.39 0.28 0.53 0.64

Gov2

Early-Precision High-Recall

Rank-S Taily ShRkC RF QR Rank-S Taily ShRkC RF QR

MAE 1.62 1.59 3.46 1.72 1.42 2.97 2.99 4.87 2.24 2.12
PCC 0.37 0.40 0.29 0.48 0.52 0.41 0.39 0.28 0.52 0.59

Efficiency was measured using CRES and CLAT [1]. CRES calcu-

lates resource usage for a query as the upper bound on the number

of documents that match.CLAT measures query latency as the max-

imum number of documents that match in any selected shard. A

two one-sided test (TOST) of equivalence [38] was used to com-

pare results between exhaustive and selective search. The threshold

for equivalence was set as 0.05 · µ, where µ is the mean value of

exhaustive search for a specific metric. Equivalence is established

by rejecting the null hypothesis that selective search is at least 5%

worse than exhaustive search with a 95% confidence interval.

Baselines. Five resources selection methods were compared: Taily

[1], ReDDE [41], Rank-S [25], learning to rank resources (L2RR) [13]

and ShRkC [22], a random forest based shard cutoff predictor that

uses ReDDE to generate the training data and shard cutoff estimator

features. A sample size of 1% was used for CSI-based experiments.

ShRkC’s random forest predictor has two parameters, mtry (the

number of features to sample at each split in the learning process),

and ntree (number of decision trees to fit for ensemble learning).

We used mtry=p/3 where p is the total number of features, and

ntree=500, which is consistent with prior work.

Shard Cutoffs. Rank-S and Taily compute query-specific shard

cutoffs that are influenced by parameters. Taily’s parameters in-

clude v , the estimated number of relevant documents. Rank-S uses

B, which controls the exponential decay of scores. ReDDE and L2RR

use a query-independent shard cutoff (also pre-defined). In our ex-

periments, each resource selection algorithm used its own strategy,

but the parameters were tuned to produce shard cutoffs compatible

with early-precision and high-recall task requirements.

For early-precision search, we used v = 25 (Taily) and B = 3.2

(Rank-S) when searching ClueWeb09-B; and v = 25 (Taily) and

B = 2.6 (Rank-S) when searching Gov2. These differ from the

v = 45 and B = 5 parameter values used in most prior Rank-S and

Taily studies [21]. In our setting, the default parameter values were

less effective and easier to beat. 10-fold cross validation on the test

set produced parameters that most often gave Taily and Rank-S the

maximum performance. For recall-oriented selective search, which

has not been studied previously, we found empirically that 8 shards

for ClueWeb09-B, and 10 shards for Gov2 were usually enough to

achieve a result comparable with exhaustive search. The parameters

for Taily and Rank-S were tuned to search a similar number of



(a) Early-precision (b) High-recall

Figure 2: The distributions of shard cutoff predictions for ClueWeb09-B under early-precision and high-recall conditions. The
x axis shows predicted cutoff values. The y axis shows the percentage of queries with each prediction.

(a) Early-precision (b) High-recall

Figure 3: The distributions of shard cutoff predictions for Gov2 under early-precision and high-recall conditions. The x axis
shows predicted cutoff values. The y axis shows the percentage of queries with each prediction.

shards for each of the datasets. For this search scenario, we used

v = 11 (Taily) and B = 1.6 (Rank-S) for ClueWeb09-B and v = 12

(Taily) and B = 1.6 (Rank-S) for Gov2. The query-independent shard

cutoffs used by ReDDE and L2RR were set based on the average

number of shards searched by other resource selection methods in

each search scenario for both the datasets.

Search Scenarios. Query-specific shard cutoff prediction was stud-

ied in early-precision and recall-oriented settings. The following

parameters were used: p: The RBP user persistence; ϵ : The MEDRBP
threshold; and depth: The depth at which the document rankings

rd,e and rd,s are compared. Our precision-oriented search parame-

ters were p = 0.80, ϵ = 0.08, and depth = 100. Our recall-oriented

search parameters were p = 0.95, ϵ = 0.06, and depth = 1, 000.

A 5-fold cross validation was done on the test set to find the ϵ
parameters that most often gave the maximum performance. Also,

the variance in this parameter across several folds was almost neg-

ligible. It may seem counter-intuitive that early-precision uses a

larger ϵ than high-recall; this is due to the sensitivity of MEDRBP

to ranking depth. MEDRBP assumes that all documents deeper than

depth are a mismatch, which is a worst-case scenario. When depth
is increased, actual mismatches are accounted for. A good MEDRBP

value is easier to achieve with higher depth, and harder for lower

depth, thus ϵ and depth are inversely-related.

5 EXPERIMENTAL RESULTS
Four experiments investigated our research questions.

Cutoff Prediction Comparisons. First we investigated the accu-

racy of query-specific cutoff prediction methods used with exist-

ing resource selection methods (RQ1) and our new cutoff predic-

tion methods (RQ3). Each method was tuned or trained for early-

precision and recall-oriented search on the ClueWeb09 and Gov2

datasets, as described in Sections 3 and 4.

Table 4 shows themean average error (MAE) and Pearson correla-

tion coefficient (PCC) for each method. MAE differences don’t seem

large for early-precision, but QR is clearly better under high-recall.

Pearson correlation coefficients vary from [0.26 . . . 0.29] (ShRkC)

and [0.34 . . . 0.41] (Taily and Rank-S) to [0.44 . . . 0.64] (QR).

Figures 2 and 3 show how well each method matches the distri-

bution of the ground truth cutoff labels (Label) determined by the

Find_k algorithm (Figure 1). Higher agreement indicates more accu-

rate predictions. All methods are more accurate for the ClueWeb09

dataset than for the Gov2 dataset. In three out of four conditions,

Taily is biased towards under-prediction. Rank-S, ShRkC, and RF

over-predict the number of shards in all cases. QR is the most accu-

rate of these methods at predicting shard cutoff labels; however, it

over-predicts in three out of the four conditions.



ClueWeb09-B

Early-Precision Oriented

Shard Ranking P@5

NDCG

@10

Overlap

@100

CRES CLAT

Taily .370 .214 .623 .508 .180

Rank-S .375 .229 .673 .517 .178

ReDDE .386 .229 .708 .551 .190

L2RR .389 .234 .734 .560 .189

rs,e .409 .247 .818 .534 .187

Exhaustive .390 .240 - 5.24 .330

High-Recall Oriented

Shard Ranking

MAP

@1000

RBP0.95

Overlap

@5000

CRES CLAT

Taily .180 .261 (.339) .599 .811 .187

Rank-S .181 .279 (.349) .612 .811 .190

ReDDE .182 .281 (.345) .618 .853 .198

L2RR .196 .293 (.304) .626 .896 .199

rs,e .202 .301 (.286) .709 .850 .195

Exhaustive .202 .292 (.309) - 5.24 .330

Gov2

Early-Precision Oriented

Shard Ranking P@5

NDCG

@10

Overlap

@100

CRES CLAT

Taily .515 .340 .583 .191 .070

Rank-S .519 .342 .620 .189 .069

ReDDE .520 .363 .672 .237 .092

L2RR .597 .442 .711 .193 .067

rs,e .602 .447 .832 .194 .071

Exhaustive .612 .441 - 2.655 .282

High-Recall Oriented

Shard Ranking

MAP

@1000

RBP0.95

Overlap

@5000

CRES CLAT

Taily .229 .461 (.049) .544 .346 .081

Rank-S .233 .479 (.054) .567 .324 .076

ReDDE .244 .483 (.045) .578 .373 .098

L2RR .314 .499 (.034) .619 .325 .071

rs,e .323 .517 (.031) .701 .325 .077

Exhaustive .339 .508 (.030) - 2.655 .282

Table 5: Comparisons of shard ranking methods. RBP user persistence is 0.95. The number in brackets denotes the residual.

Note that the upward trend for Label at the right side of two fig-
ures is due to a long tail of queries with values above the K = 8 and

K = 16 maximums for early-precision and high-recall conditions.

Shard Ranking Comparisons. The second experiment explores

shard ranking accuracy independently of shard cutoff estimates

(RQ2), because an algorithm’s accuracy at ranking shards may

not match its accuracy at predicting the cutoff. This experiment

uses the labels produced by the Find_k algorithm (Figure 1) as the

cutoff prediction for all shard ranking algorithms. Thus, the only

difference is how accurately different methods rank shards. We

include rs,e , an ideal shard ranking produced from the exhaustive

search document ranking (Section 3), to show the best-case scenario.

Rank-S and ReDDE may not generate a full shard ranking be-

cause they are sample-driven. Rank-S rankings are always less than

or equal in length to ReDDE rankings, due to its exponential decay.

When Rank-S returns fewer than K shards, its ranking is extended

by appending shards from a ReDDE ranking, which performs sim-

ilarly to Rank-S. When REDDE returns fewer than K shards, the

Rank-S and ReDDE shard rankings are shorter than desired.

Table 5 shows the effectiveness and efficiency of each algorithm

when searching the same number of index shards. L2RR produces

rankings closest to exhaustive search, as measured by Overlap@n
and RBP0.95; its values are higher than Taily, Rank-S and ReDDE.

It also generates more accurate document rankings for both early-

precision and recall-oriented metrics.

The residual values for RBP0.95 are high, which is expected in

deeper evaluation scenarios when the relevance judgment pool

depth is shallow. The number of unjudged documents is high in

the recall-driven search scenario, and this effect should be explored

further in future work. We have also observed that high residuals

correlate with low accuracy scores, implying that shard ranking

accuracy could be impacting the results.

All algorithms search the same number of shards, thus variations

in CRES and CLAT are due to the sizes of selected shards. L2RR

selects larger shards than Taily, Rank-S, and ReDDE for ClueWeb09-

B, but smaller shards for Gov2. L2RR has many term-based features,

thus it may favor shards with longer posting lists. This would be

more likely to affect ClueWeb09, which has larger average shard

sizes and a more skewed distribution of shard sizes.

Overall, L2RR balances effectiveness and efficiency better than

Taily, Rank-S and ReDDE. Rank-S and ReDDE perform similarly

and both outperform Taily. These results answer RQ2.

Early Precision versus Recall Driven Search. The third experi-

ment investigated the document ranking accuracy and efficiency

of each method under early-precision and recall-oriented condi-

tions. Each method used its own shard rankings and query-specific

(Rank-S, Taily) or query-independent (ReDDE, L2RR) shard cutoff

predictions. This experiment also included ReDDE shard ranking

with ShRkC cutoff prediction as proposed by Kulkarni [22], and

L2RR shard ranking with the new quantile regression (QR) and

random forest (RF) cutoff predictions (Section 3). Cutoff prediction

accuracy was measured using mean absolute error (MAE) relative

to the test labels. Table 6 summarizes the results.

Taily, Rank-S, ReDDE, and L2RR produce higher accuracy, over-

lap, and computational costs in this experiment than in the second

experiment; this is not surprising. The second experiment used

the Find_k shard cutoffs (Figure 1), which assumes perfect shard

ranking; however, none of the rankers are perfect. When using

their own shard cutoffs, they search more shards, which produces

higher accuracy and overlap at higher computational expense.

Taily was the most efficient, as indicated by low CRES ; however,

it was also the least accurate, as indicated by relevance and overlap

metrics. This result is consistent with the first experiment, which

showed that Taily frequently under-predicts the cutoff.

ReDDE with ShRkC cutoff predictions produces higher accuracy

and overlap than ReDDE with query-independent cutoffs, but at

higher computational cost. When shard rankers are inaccurate,



ClueWeb09-B

Early-Precision Oriented

P@5

NDCG

@10

Overlap

@100

K̄ MAE

CRES
(M)

CLAT
(M)

Taily .371 .221 .645 4.52 1.34 .521 .189

Rank-S .393
∗ .237

∗
.690 4.37 1.31 .570 .189

ReDDE .391
∗

.229 .711 5 1.72 .559 .199

L2RR .409
∗ .243

∗
.744 5 1.72 .559 .201

ShRkC .410
∗ .244

∗
.752 7.21 2.99 1.07 .231

L2RR+QR
45
.413∗ .249∗ .792 4.4 1.14 .530 .190

L2RR+RF .400
∗ .241

∗
.789 5.1 1.67 .590 .211

Exhaustive .390 .240 - 123 - 5.24 .330

High-Recall Oriented

MAP RBP0.95

Overlap

@5000

K̄ MAE

CRES
(M)

CLAT
(M)

Taily .173 .288(.318)∗ .611 7.72 2.84 .841 .200

Rank-S .182 .289(.308)∗ .642 7.90 2.91 .843 .201

ReDDE .181 .289(.338)∗ .644 8 2.42 .871 .201

L2RR .192
∗ .296(.317)∗ .653 8 2.42 .893 .199

ShRkC .197
∗ .299(.308)∗ .664 11.2 4.85 1.52 .230

L2RR+QR
45
.198∗ .299(.308)∗ .706 7.99 1.94 .872 .200

L2RR+RF .193
∗ .294(.306)∗ .703 8.60 2.31 .940 .205

Exhaustive .202 .292 (.309) - 123 - 5.24 .330

Gov2

Early-Precision Oriented

P@5

NDCG

@10

Overlap

@100

K̄ MAE

CRES
(M)

CLAT
(M)

Taily .587 .400 .594 5.48 1.59 .204 .071

Rank-S .590
∗

.411 .621 5.59 1.62 .231 .072

ReDDE .582 .410 .683 5 1.58 .216 .068

L2RR .595
∗ .438

∗
.721 5 1.58 .218 .071

ShRkC .597
∗ .420

∗
.743 7.20 3.46 .276 .106

L2RR+QR
45
.616∗ .446∗ .826 5.46 1.42 .224 .069

L2RR+RF .596
∗ .430

∗
.824 6.30 1.72 .250 .091

Exhaustive .612 .441 - 199 - 2.655 .282

High-Recall Oriented

MAP RBP0.95

Overlap

@5000

K̄ MAE

CRES
(M)

CLAT
(M)

Taily .291 .499(.044)∗ .567 9.80 2.99 .341 .078

Rank-S .300 .501(.042)∗ .580 9.4 2.97 .353 .072

ReDDE .301 .498(.058)∗ .595 10 2.96 .391 .080

L2RR .321
∗ .511(.049)∗ .622 10 2.96 .381 .081

ShRkC .320
∗ .511(.044)∗ .632 12.1 4.87 .683 .118

L2RR+QR
45
.325∗ .516(.035)∗ .690 9.71 2.12 .355 .074

L2RR+RF .324
∗ .511(.043)∗ .682 10.02 2.24 .430 .087

Exhaustive .339 .508 (.030) - 199 - 2.655 .282

Table 6: Comparison of document ranking accuracy. K̄ is the average number of shards searched. MAE is the mean absolute
error in predicting the number of shards that should be searched. ∗ indicates statistical non-inferiority relative to exhaustive
search. The best result for each metric is marked bold.

searching more shards improves accuracy but also increases costs.

ShRkC greatly over-predicts shard cutoffs.

The L2RR, QR, and RF results use the L2RR shard ranking, but

with different shard cutoff predictions. QR delivers the most accu-

rate predictions, as measured by mean average error (MAE), which

results in the highest accuracy and overlap values and some of the

most efficient CRES and CLAT efficiency values. The RF predictor is

less accurate than QR, which is consistent with the expectation

that quantile regression is more effective when the underlying

distribution is skewed.

QR was slightly more effective than exhaustive search for all

relevance-based metrics in the early-precision experiments, and

for RBP0.95 in high-recall experiments. We don’t want to over-

emphasize these results, because beating exhaustive isn’t the right

goal for an early-stage ranker. However, these results remind us that

it isn’t necessary for Overlap@n to be 100% for selective search to

deliver high-quality documents to the next stage rankers. Learned

shard rankers with learned cutoffs are becoming very effective.

Figures 4a – 5b show effectiveness vs. efficiency tradeoffs among

the different methods, and for QR with different values of its τ pa-

rameter. The x-axis shows resource usage (CRES). The y-axis shows

an early-precision or recall-oriented effectiveness metric. The goal

is accuracy and computational costs close to rs,e .
Taily is more efficient than Rank-S, ReDDE and L2RR but less

effective. L2RR is more effective than Taily, Rank-S, and ReDDE,

but usually computationally expensive.

Quantile regression’s τ parameter enables tuning the efficiency

vs. effectiveness tradeoff. A smaller τ focuses more on efficiency; a

larger τ focuses more on recall. A reasonable range of parameter

values produce better accuracy and efficiency than baseline algo-

rithms. τ = 0.45 – the value chosen using 10-fold cross-validation

on the training set to minimize the mean average error (MAE) –

best balances efficiency and effectiveness in both scenarios.

This third experiment shows that both quantile regression and

random forests with the features described in Section 3 produce

shard cutoff predictions that deliver substantially higher Overlap@n
values than all baseline methods on both datasets under early-

precision and high-recall conditions. QR gives a better mix of effec-

tiveness and efficiency than RF, and is easily tuned to give greater

control over the competing goals of efficiency and effectiveness.

Training Labels Comparisons. The experiments above use rs,e , a
shard ranking generated from exhaustive search results, to produce

the ‘gold standard’ shard cutoffs used for training and testing. They

show that those cutoffs can be too aggressive for less perfect shard

ranking algorithms.

The Find_k algorithm (Figure 1) can use any shard ranking to

generate training data for the QR predictor; it need not be rs,e . This
experiment investigates using shard rankings produced by Taily and

L2RR (rs,Taily and rs,L2RR ) to train QR predictors that may bemore

compatible with those algorithms (RQ5). This experiment omits

Rank-S and ReDDE because they are unable to generate complete

shard rankings. Results are shown in Table 7. Exhaustive search

results are shown for comparison, as in previous experiments.



(a) Early-precision oriented search. (b) High-recall oriented search.

Figure 4: Efficiency-effectiveness tradeoffs for ClueWeb09-B. rs,e indicates using test labels with rs,e shard rankings.

(a) Early-precision oriented search. (b) High-recall oriented search.

Figure 5: Efficiency-effectiveness tradeoffs for Gov2. rs,e indicates using test labels with rs,e shard rankings.

Training with shard rankings matched to exhaustive search (rs,e )
always produces more aggressive shard cutoff predictions andmuch

more efficient search than training with shard rankings produced

by Taily and L2RR. This result is to be expected, because rs,Taily
and rs,L2RR cannot be better orderings than rs,e .

Combining Taily with a QR predictor trained for Taily is more

effective across all relevance and overlap metrics than combining

it with a general QR predictor trained from rs,e ; perhaps this is not
surprising. However, combining L2RR with a QR predictor trained

for L2RR is a little less accurate across most relevance and overlap

metrics than combining it with a general QR predictor trained from

rs,e ; in this case, pairing more accurate shard cutoff estimates with

a more accurate shard ranker produces slightly better search results

at much lower computational cost.

In answering RQ5, we conclude that if more accurate shard

rankings (L2RR) are used, training with ranker-independent labels

is more accurate. If less accurate resource selection algorithms are

used, training with ranker-specific labels is more effective.

6 CONCLUSION
Previous studies treat selective search as a single stage retrieval

method, and thus focus on optimizing early-precision metrics. We

argue that selective search is a better choice for early-stage retrieval,

thus evaluation should focus on high recall and how well selective

search reproduces exhaustive search. We also argue that shard

ranking and deciding how many shards to search should be studied

separately, because they are separate sources of error.

There is substantial variation in the accuracy of shard cutoff

decisions made by Taily and Rank-S, two algorithms often used for

selective search; and by ShRkC, a newer shard cutoff predictor used

with ReDDE. When attention is focused on ranking accuracy, Taily

is the least accurate of the algorithms studied, the older ReDDE is

surprisingly competitive, and the newer L2RR is the most effective.

This paper presents a new feature-based method of making

query-specific shard cutoff decisions that can be trained for use

with different shard ranking algorithms and/or tuned to satisfy

early-precision or high-recall retrieval goals by adjusting (only)

how training data is generated. The QR predictor produces higher

agreement with exhaustive search results (Overlap@n) for Taily
and L2RR than their default methods of predicting shard cutoffs.

Finally, although previous studies focused almost entirely on

the accuracy of selective search at ranks 5-30, we show that se-

lective search can deliver about 70% agreement with exhaustive

search down to about rank 5,000, while requiring only 16-18% of the

computational effort on two widely-studied datasets. These results

support the argument that selective search is a good choice for

early-stage retrieval in sophisticated multi-stage retrieval pipelines.
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ClueWeb09-B

Early-precision search

Training

Data

K̄ P@5

NDCG

@10

Overlap

@100

CRES CLAT

Taily rs,e 4.40 .371 .219 .643 .49 .175

Taily rs,Taily 7.89 .389 .221 .689 .88 .189

L2RR rs,e 4.40 .413 .245 .792 .53 .190

L2RR rs,L2RR 7.23 .412 .218 .772 .87 .193

Exhaustive 123 .390 .240 - 5.24 .330

Recall-oriented search

Training

Data

K̄ MAP RBP0.95

Overlap

@5000

CRES CLAT

Taily rs,e 7.99 .180 .270 (.339) .617 .83 .199

Taily rs,Taily 11.52 .189 .272 (.310) .646 1.28 .199

L2RR rs,e 7.99 .198 .299 (.308) .706 .84 .200

L2RR rs,L2RR 11.48 .199 .289 (.312) .707 1.32 .201

Exhaustive 123 .202 .292 (.309) - 5.24 .330

Gov2

Early-precision search

Training

Data

K̄ P@5

NDCG

@10

Overlap

@100

CRES CLAT

Taily rs,e 5.48 .516 .341 .592 .222 .072

Taily rs,Taily 7.46 .549 .342 .683 .284 .102

L2RR rs,e 5.46 .615 .447 .826 .224 .069

L2RR rs,L2RR 7.84 .615 .390 .812 .292 .103

Exhaustive 199 .612 .441 - 2.655 .282

Recall-oriented search

Training

Data

K̄ MAP RBP0.95

Overlap

@5000

CRES CLAT

Taily rs,e 9.71 .230 .474 (.031) .564 .342 .072

Taily rs,Taily 13.2 .297 .508 (.041) .608 .712 .118

L2RR rs,e 9.71 .325 .516 (.035) .690 .355 .074

L2RR rs,L2RR 12.9 .324 .498 (.039) .699 .709 .118

Exhaustive 199 .339 .508 (.030) - 2.655 .282

Table 7: A comparison of using different shard rankings to generate training data for the QR predictor.
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