Dirichlet Process Mixture Model with Latent Matchings for Cross Species Expression Analysis

Overview

- Many applications need to match datapoints.
- Orthologous genes (evolving from the same ancestry) across ▷ Images and image captions.
- ▷ Interactions between two groups of people.
- We would like to develop a model to:
- 1. Infer the matchings of datapoints.
- 2. Cluster datapoints into coherent groups.

Results

- Non-parametric Bayesian model based on Dirichlet Process. can infer the posterior matching probability and the number o
- Inference algorithm: Variational Inference.
- Simulation and Real data results show good performance.

Methods

. Some prior belief about potential matchings between two grou datapoints = a sparse matrix.

★★

2. Match datapoints of 2 groups and cluster them:

Clusters of datapoints in each group are coherent.

Good matchings \rightarrow Clusters across groups are also cohe GOOD GOOD BAD

Joint likelihood of the matched datapoint clusters \sim Quali matchings

earning Department, Carnegie Mellon University, Pittsburgh, PA, USA

Watchine LetGraphical ModelLatent matching variable:
$$m_i = \begin{cases} j, & x_i \text{ is in } \\ 0, & x_i \text{ has } \end{cases}$$
Nixture membership variable: z_i . Mixture para $a_i = 1$ |

- natched to y_j . no match in \mathbf{y} . rameters: η_i .
- Dirichlet $Process(\alpha, G_0)$ G $\mathsf{Discrete}(\boldsymbol{\pi}_i)$ $F_Y(\eta_i)$, if $m_i > 0$ $F_{X|Y}(y_{m_i}, \eta_i) \quad \text{if } m_i > 0$ $F_X(\eta_i)$ otherwise
- $m_i z_i_n \mathbf{v} \boldsymbol{\eta}$ riables \mathbf{v} : K-1 $\prod q_{\lambda_k}(\eta_k)$ $n_i^j \} \prod q_{\gamma_k}(v_k)$ by Blei and Jordan (2003).
- ameters given the conditional
- nts are Gaussians with
- act computation of mixture

5-dimensional Gaussians $_{120}$ and the last 2 dimensions [0, 20] random noise entries

- . Infer the matchings of datapo 2. Cluster datapoints into coher
- groups.

Systematic discovery of orthology in many species from (DNA) Sequences

• Discovery of novel groups of coherently changing genes across species.

Conditions: treatment, ...

e		
fected	P valueCorrected P GO term description2.86216e-10<0.001regulation of apoptosis4.97408e-10<0.001regulation of cell death7.82427e-10<0.001protein binding4.14320e-10<0.001regulation of programmed cell death4.49332e-09<0.001positive regulation of cellular process4.77653e-09<0.001positive regulation of biological process8.27313e-09<0.001response to chemical stimulus1.17013e-070.001cytoplasm1.28299e-070.001response to stress2.20104e-070.001cell proliferation	
² ⁴ ⁴	 Genes in cluster 1 are associated with immune and stress responses. Genes in cluster 3 are strongly upregulated in human cells while not changing in mouse: enriched for ribosomal proteins. Cluster 4 contains the most coherent set of upregulated genes across the two species. 	
nod oints. rent	 Systematic and rigorous approach to: Identify gene matchings. Infer groups of coherently-changing genes. 	
	{hple,zivbj}@cs.cmu.edu	