
On the Algorithmic Stability and Generalization of
Adaptive Optimization Methods

Abstract

Despite their popularity in deep learning and machine learning in general, the
theoretical properties of adaptive optimizers such as Adagrad, RMSProp, Adam or
AdamW are not yet fully understood. In this paper, we develop a novel framework
to study the stability and generalization of these optimization methods. Based on
this framework, we show provable guarantees about such properties that depend
heavily on a single parameter β2. Our empirical experiments support our claims
and provide practical insights into the stability and generalization properties of
adaptive optimization methods.

1 Introduction
Recent years have witnessed a surge of interest in adaptive optimization methods for deep learning
settings. For instance, Adam [1] — despite its drawbacks in theory [2] — is often used in practice.
Other popular choices of adaptive methods include Adagrad [3], RMSProp [4] and AdamW [5]. All
of those methods are now the standard choices in deep learning communities. However, such adaptive
methods are not always the winner, because people still find the traditional methods of Gradient
Descent (GD) and Stochastic Gradient Descent (SGD) more superior in certain cases, both in terms
of optimization and generalization [2, 6]. Despite their different yet prevalent usages, the choices
of which optimizer to use are not entirely clear and often come from practice or user experiences.
Likewise, there has been no known theoretical foundation that thoroughly explains the reasons as to
why we use a particular optimizer in this case, but a different one in another case. In this work, we
build such a theoretical framework that offers reasons concerning that important question.

Retrospectively, the development of adaptive optimization methods could be dated back to the
work of [7] and [3] in the online learning setting. Their methods work well in sparse settings [8].
But the adaptive learning rate often decays rapidly for dense gradients, thus slowing down the
convergence speed of their methods significantly. To tackle this issue, some approaches such as
Adadelta [9], RMSProp [4], and Adam [1] proposed to use an exponential moving average of past
squared gradients. In particular, Adam has become an increasingly popular optimizer in deep learning
due to its effectiveness in the early training stage [10]. However, few facts are known about these
adaptive methods in terms of optimization and generalization.

Generally, when it comes to a learning problem, there are two most important metrics that people care
about, which are directly related to the optimizers being used. One is the convergence property such
as convergence guarantees and convergence rate, which offer insights about the fundamental quality
of the optimizer in terms of reliability and run-time complexity [2]. The other metric is generalization,
which evaluates how well the optimizer does on unseen test data comparing to its performance on the
train data [11]. Oftentimes there is a tradeoff between those two metrics: one can not usually perform
well on train data (i.e. convergence) as well as on test data (i.e. generalization) [12]. Specifically,
the generalization error is usually large when the training loss is small and vice versa. Importantly,
the generalization error is upper bounded by the stability of the optimizer [13]. Roughly speaking,
stability measure the sensitivity of an optimizer with respect to the change of train data. This is an
important concept because we do not want to use an optimizer that finds very different solutions

Preprint. Under review.



when we just slightly change the train data. In this paper, we study the adaptive optimization methods
through the lens of stability and draw some conclusions about their generalization as a consequence.

Our contributions. First, we provide a novel analysis for the stability of adaptive optimization
methods which is different from the previous analysis for the stability of SGD and SGD with
momentum by [14, 15]. Second, we show that the stability of the adaptive optimization methods
depends on the parameter β2. Specifically, the bigger the β2, the more stable the algorithm is. Our
experiments confirm this theory. Third, we show that when β2 goes to 1 at the rate 1 − α/t, the
stability grows as O(T r), r < 1 where T is number of iterations. Our experiments reflect this rate.
Finally, we show that weight decay helps improve the stability and generalization of Adam. Our
experimental results also validate this theory.

2 Related Work

Convergence. The convergence of adaptive optimization methods has been studied under various
conditions. Adaptive learning rate in Adagrad was shown to improve convergence in sparse, convex
setting [3, 7] and in non-convex setting [16]. In convex setting, [2] proposed AMSGrad to fix a
convergence issue in Adam in certain online and stochastic learning cases due to its constant learning
rate, and hence stimulated following work trying to improve Adam. [17] proposed Adabound that
used a clipping technique and gradually forced adaptive learning rate to converge to a predefined
value. [10] proposed SAdam and SAMSGrad, which applied softmax to each coordinate of the
adaptive learning rates to keep them low variance. In non-convex settings, the convergence of Adam
has been studied by several works. [18] showed that Adam converged when increasing the batch size.
[19] then showed that under some mild assumptions, the deterministic Adam converged. Additionally,
[20, 21] proved the convergence of generalize versions of Adam. Recently, some works have proven
that AMSGrad converged in the weakly convex setting [22, 23]. While all of them showed that Adam
converged at the rate of O( 1√

T
), none of them answered the question as to why Adam-like algorithms

have any benefits over SGD in terms of optimization, unlike in our work.

Stability. Algorithmic stability is a fundamental concept in learning theory that dates back to the
pioneering work by [24], who showed that the expected sensitivity of a classification algorithm (kNN
in particular) to changes of individual examples could be used to obtain a variance bound of a leave-
one-out estimator. Later, [13] introduced the concept of uniform stability, from which the empirical
risk minimization (EMR) was uniformly stable if the objective function was strongly convex. This
concept was further extended to study randomized algorithms such as bagging and boosting [25].
[26] then proposed weaker on-average stability and used it to study unregularized learning algorithms
[27]. Very recently, almost optimal high-probability bounds were established for uniformly stable
algorithms by developing elegant concentration inequalities for weakly-dependent random variables
[28, 29, 30]. Other notion of stability were also proposed such as the uniform argument stability [31],
hypothesis stability [13] and hypothesis set stability [32]. The deep connection between algorithmic
stability and learnability was identified [26, 33]. Our work is built upon the foundation of those ideas.

Generalization. In a seminal paper, [14] used uniform stability to derive generalization bound for
SGD in the strongly convex, convex, and non-convex settings. This stability analysis was further
refined by [34] by using the on-average variance and was more recently extended to the non-smooth
setting by [35]. In another work, [36] developed a bound for SGD concerning data-dependent
stability, a nice property that showed how initialization would affect generalization. Furthermore,
[37] developed a tradeoff lower bound between stability and convergence of iterative optimization
algorithms. They also proved stability bound for momentum optimizers such as Nesterov acceleration
and a heavy-ball method with a fixed momentum when the objective function is quadratic. [15, 38]
derived the stability bound for heavy-ball method for general convex and non-convex functions. In
contrast to SGD and SGD with momentum, there have been no existing results in the literature on
the stability and generalization for adaptive optimization methods, which are addressed by us in this
work.

Other approaches were also developed for characterizing the generalization error as well as the
estimation error, which are orthogonal to our work. Some of them were based on the information-
theoretic approach [39, 38, 40, 41], the algorithm robustness framework [42, 43], large-margin theory
[44], and the classical VC theory [45].

2



3 Preliminaries
In order to establish our main results, we first formulate related fundamental concepts concerning
generalization, algorithmic stability, and adaptive optimization methods.

3.1 Excess risk decomposition
In this section, we briefly review fundamental concepts of empirical risk minimization and excess
risk decomposition. We consider the standard setting in supervised learning problems. In this setting,
we are given a sample S = {z1, . . . , zn} of size n where each data point zi lies in some space Z and
is drawn i.i.d according to an unknown distribution P ∈ P . Given a loss function f(x; z), we want to
find some x ∈ Ω ⊂ Rd that minimize the expected loss F (x) = Ez∼Pf(x; z) =

∫
Z f(x, z)dP(z).

Since the distribution P is unknown, we instead minimize the empirical loss FS(x) =
1
n

∑n
i=1 f(x; zi). We denote by xS an estimator computed from sample S. The statistical question is

how to bound the excess risk in terms of the difference between the population risk evaluated at xS
and the true minimal risk over the entire parameter space Ω,R(xS) = F (xS)− infx∈Ω F (x). We
have the following lemma about expected risk decomposition.

Lemma 1. Let x∗S be an empirical risk minimizer. We then have that
ES [R(xS)] ≤ Egen + Eopt = ES [F (xS)− FS(xS)] + ES [FS(xS)− FS(x∗S)],

where Egen and Eopt are the expected generalization error and optimization error respectively.

For proof, please see Appendix A. Similar derivations to this result can also be found in [46, 12, 37].

3.2 Algorithmic stability
It turns out that the expected generalization error can be controlled by various notions of algorithmic
stability. For a thorough review, please refer to [13, 26]. For the purpose of this paper, we are only
interested in the notion of uniform stability introduced by [13].

Definition 1. An algorithm, which output a model xS for sample S, is τ−uniformly stable if for all
k ∈ {1, . . . , n}, for all data sample pair S = {z1, . . . , zk, . . . , zn}, and S′ = {z1, . . . , z

′
k, . . . , zn},

where zi and z′k are i.i.d sampled from P, we have supz∈Z |f(xS ; z)− f(xS′ ; z)| ≤ τ.

This definition implies that when we randomly replace one arbitrary sample from the training data
with another i.i.d one, the deviation of the loss between two output models is uniformly within some
τ . Moreover, the smaller the τ is, the more stable the algorithm is. One important property of uniform
stability is that it implies generalization, as formulated in the following theorem.

Theorem 1. If an algorithm that outputs a model xS for sample S is τ -uniformly-stable, then its
expected generalization error is bounded as follows,

|ES [F (xS)− FS(xS)]| ≤ τ. (1)

The proof of Theorem 1 can be found in [14]. For the rest of this paper, we focus on finding an upper
bound for τ in Definition 1 when using the adaptive optimization methods.

Remark 1. The concept of uniform stability has a strong connection with the sensitivity analysis
in optimization. Sensitivity analysis studies the sensitivity of the optimal value of an optimization
problem with respect to perturbations of the problem’s constraints. For more detail about sensitivity
analysis, please refer to [47].

3.3 Adaptive optimization methods
mt = αtmt−1 + (1− αt)∇f(xt−1, zt), (2)

vt = βtvt−1 + (1− βt)∇f(xt−1, zt)
2, (3)

xt = xt−1 − ηt
mt√
vt + ε

, (4)

ṁ(t) = p(t)(∇F (x(t))−m(t)), (5)

v̇(t) = q(t)(∇F (x(t))2 − v(t)), (6)

ẋ(t) = − m(t)√
v(t) + ε

, (7)

In this section, we review the general formulation the adaptive optimization methods (AOM). Let
(Z,F ,P) be a probability space. Consider the minimization problem minx∈Ω F (x), where F (x)
is defined in Section 3.1, and f : Ω × Z → R is a measurable map. For a fixed z, the mapping
x 7→ f(x, z) is supposed to be differentiable and its gradient w.r.t x is ∇f(x, z). Starting from
(x0,m0, v0) ∈ Rd × R × Rd+, AOM generates updates at time step t as shown in Equations (2, 3,
4), where αt, βt ∈ (0, 1) and ε > 0 (to prevent zero division). When αt = α, βt = β, the above

3



formulation becomes Adam algorithm. Notice that the α and β in this case corresponding to the β1

and β2 in Adam optimizer. When αt = 0, βt = 1− α
t , we obtain Adagrad optimizer.

In the continuous setting, the formulation above can be shown as the noisy Euler’s discretization
of the ordinary differential equation (ODE) in Equations (5, 6, 7), where (x(0),m(0), v(0)) =
(x0,m0, v0) [48]. This ODE’s formulation helps us overcome the difficulties in the latter analysis.
We will look at AOM as a system of two equation with variables (x, v) instead of treating v as a
separate adaptive learning rate.

4 Stability of adaptive optimization methods
In this section, we study the stability of the AOM optimizer when αt = 0 for all t. We leave the
analysis with αt > 0 as a future research direction. In this case, we show that the stability of the
AOM method depends on the parameter βt. Moreover, we show that the AOM method is uniformly
stable when βt ≤ 1− α/t. As a consequence, the Adagrad algorithm is a uniformly stable algorithm.

For latter convenience, let us first set up some notations and assumptions. We denote S =
{z1, . . . , zi, . . . , zn} and S′ = {z1, . . . , z

′
i, . . . , zn} to be two training sets which are drawn from the

unknown distribution P. All data points in S and S′ are the same except the data point at the i-th
position. Given a fixed model, we consider training that model by using the AOM on the above two
data sets. We denote

vt+1 = βtvt + (1− βt)∇f(xt, zit)
2 (8)

xt+1 = xt − ηt
∇f(xt, zit)√
vt+1 + ε

(9)

v′t+1 = βtv
′
t + (1− βt)∇f(x′t, z

′
it)

2 (10)

x′t+1 = x′t − ηt
∇f(x′t, z

′
it

)√
v′t+1 + ε

(11)

where (xt, vt) and (x′t, v
′
t) are the outputs of the AOM when running on S and S′ respectively.

Specifically, at every time step t, we pick an index it uniformly random from the set {1, . . . , n} and
update the parameters according to the AOM update rules. Notice that we use two different notation
zit and z′it because we pick data from two different training sets S and S′. In addition, for a fixed
t0 ∈ {1, . . . , n}, we denote

δt = ‖xt − x′t‖2, ∆t = E[δt|δt0 = 0], (12)

σt = ‖vt − v′t‖2, Σt = E[σt|δt0 = 0]. (13)

The analysis relies on the following set of assumptions:

(1) f(., z) is L-Lipschitz and µ-smooth for all z ∈ Z , i.e.
|f(x, z)− f(y, z)| ≤ µ‖x− y‖2, and ‖∇f(x, z)−∇f(y, z)‖2 ≤ L‖x− y‖2 (14)

which imply ‖∇f(x, z)‖2 ≤ µ for all z ∈ Z .
(2) There exists M > 0 such that f(x, z) ≤M for all x, z ∈ Ω×Z .
(3) There exists λ1, λ2 ≥ 0 such that

min
t

min
i
{vt+1, v

′
t+1} ≥ λ1, max

t
max
i
{vt+1, v

′
t+1} ≤ λ2. (15)

Note that assumption (1) is standard when analyzing the stability of optimization algorithms [13, 14].
Assumption (2) is easily achieved if we restrict our domain to a compact set. Assume that we run
the AOM on S and S′ for T steps to get the outputs xT and x′T . We first have the following lemma
which controls the difference of the loss at xT and x′T . The proof of this lemma can be found in [14].
For completeness, we also provide a proof of this lemma in the appendix.

Lemma 2. Assume that assumptions (1) and (2) are satisfied. Let S and S′ be two samples of size n
differing in only a single example. Denote by xT and x′T the output after T steps of AOM on S and
S′, respectively. Then for all z ∈ Z and t0 ∈ {1, . . . , n}, we have that

E|f(xT ; z)− f(x′T ; z)| ≤ 2M
t0
n

+ µE[δT |δt0 = 0] = 2M
t0
n

+ µ∆T .

The insight of Lemma 2 is that AOM has to take several steps before it encounters the index i where
the two data sets are different. This will be important later in our analysis because our loss function
could be non-convex. In real application, n is usually very big so it will take a long time before AOM
reach the index i where the two data sets are different. From now on, we will fix t0 ∈ {1, . . . , n}.
Given this lemma, it remains to estimate the quantity ∆T . Next, we have the following theorem.

Theorem 2. Assume that assumptions (1), (2), (3) are satisfied. Suppose we run AOM with step size
ηt on S and S′ respectively, starting from the same initialization. Then for any outputs xt and x′t, we

4



have that

∆t+1 ≤ ∆t + ηt

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µ2(1− βt)
λ1 + ε

]
∆t

+ ηt

(
1− 1

n

)
µβt

2
√
λ1 + ε(λ1 + ε)

Σt + ηt
1

n

2µ√
λ1 + ε

. (16)

For a full proof, please see Appendix C. This theorem gives us a general upper bound of ∆t. However,
the bound also involves the term Σt which is different from that of SGD [14]. This is expected
because the formulation of the AOM involves a system of equations. Thus, in order to bound ∆t, we
also have to construct an upper bound for Σt, as described in Theorem 3.

Theorem 3. Assume that assumptions (1), (2), (3) are satisfied. Suppose we run AOM with step size
ηt on S and S′ respectively, starting from the same initialization. Then for any output xt and x′t we
have that

Σt+1 ≤ βtΣt + 2(1− βt)
(

1− 1

n

)
Lµ∆t + 2

1

n
(1− βt)µ2. (17)

The full proof is in Appendix D. Then combining Theorems 2 and 3, we obtain the following
dynamical inequality: [

∆t+1

Σt+1

]
≤
[
Ut Pt
Qt Rt

] [
∆t

Σt

]
+

1

n

[
ηt

2√
λ1+ε

µ

(1− βt)2µ2

]
, (18)

where

Ut = 1 + ηt

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µ2(1− βt)
λ1 + ε

]
,

Rt = βt,

Pt = ηt

(
1− 1

n

)
µβt

2
√
λ1 + ε(λ1 + ε)

,

Qt = 2Lµ(1− βt)
(

1− 1

n

)
Denote At =

[
Ut Pt
Qt Rt

]
and

Ut :=

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µ2(1− βt)
λ1 + ε

]
≤ U :=

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µ2

λ1 + ε

]
,

Vt :=

(
1− 1

n

)
µβt

2
√
λ1 + ε(λ1 + ε)

≤ V :=

(
1− 1

n

)
µ

2
√
λ1 + ε(λ1 + ε)

,

W := 2

(
1− 1

n

)
Lµ, Y :=

2µ√
λ1 + ε

, Z := 2µ2.

We then can rewrite At =

[
1 + ηtUt ηtVt

(1− βt)W βt

]
and

[
∆t+1

Σt+1

]
≤ At

[
∆t

Σt

]
+ 1

n

[
ηtY

(1− βt)Z

]
. Thus

the stability of AOM now depends on the norm of the matrix At. The following lemma gives an
upper bound on the operator norm of At for all t ∈ N.

Lemma 3. Let ηt = c
t and βt = 1− αt, αt ∈ (0, 1). We then have that

‖At‖2 ≤ exp
(
c

t

√
D1 +

c2

t2
D1

2
+ αtD2

)
(19)

where D1 = U2 + V 2, D2 =
√
W 2 + 1 + 1

2 (W 2 + 1).

The proof of this lemma is in Appendix E. Armed with these results, we are now ready to give a
quantitative estimate of the deviation of the model’s parameters when running AOM on two data sets
S and S′.

Theorem 4. Assume that assumptions (1), (2), (3) are satisfied. Starting from the same initialization,
suppose that we run AOM with step size ηt on S and S′ respectively for T iterations and output
xT , x

′
T . Let ηt = c

t and βt = 1− αt, αt ∈ (0, 1). We then have that

‖∆T ‖2≤
1

n
exp

(
γ
c2D1

2

)
×

T∑
t=t0+1

exp

(
D2

T∑
k=t+1

αt

)(
T

t

)c√D1
(

1

t
cY + αtZ

)
(20)

where we define γ =
∑∞
k=1

1
k2 .

For a full proof, please see appendix F. Theorem 4 and Lemma 2 provide a general bound on the
stability of the AOM. If we replace {βt} by specific values, we obtain the stability bound for some
well-know instances of AOM.

5



Corollary 1. (Stability bound for Adam with β1 = 0) Let ηt = c
t and βt = β. We then have that for

any z ∈ Z

E|f(xT ; z)− f(x′T ; z)| ≤ 2M
t0
n

+
µ

n
exp

(
γ
c2D1

2
+ (1− β)D2T

)
×

T c
√
D1

(
Y√
D1

+ (1− β)Z

T∑
t=t0+1

1

tc
√
D1

)
.

Remark 2. Although this bound is loose, it provides some insights about the stability of Adam with
β1 = 0. First, the stability bound depends on the parameter β. Specifically, the optimizer is more
stable when β is close to 1 because it reduces the effect of the term exp((1− β)D2T ) and the term
(1 − β)Z

∑T
t=t0+1

1

tc
√

D1
. Our experiments confirm this insight. Second, the stability bound also

depends on the initial step size c. Small c reduce the effect of the term exp(γ c
2D1

2 ).

In order to overcome the exponential bound in the previous corollary, we can let {βt} gradually
converge to 1. The following corollary shows that this is indeed the case.

Corollary 2. Let ηt = c
t and βt = 1− αt, αt ∈ (0, 1) such that αt ≤ α

t for all t. We then have that

E|f(xT ; z)− f(x′T ; z)| ≤ 2M
t0
n

+
µ

n
(cY + αZ) exp

(
γ
c2D1

2

)
× T c

√
D1+αD2

c
√
D1 + αD2

× 1

tc
√
D1+αD2

0

.

We could actually choose t0 to minimize the bound in the above corollary as in [14]. We have the
following corollary.

Corollary 3. Let ηt = c
t and βt = 1− αt, αt ∈ (0, 1) such that αt ≤ α

t for all t. Then the uniform
stability error of AOM is given by

E|f(xT ; z)− f(x′T ; z)| ≤ 1

n

2M

(
AB

2M

) 1
A+1

+
B(

AB
2M

) A2

A+1

T A
A+1

where we define

A := c
√
D1 + αD2, B := (cY + αZ)exp

(
γ
c2D1

2

)
1

c
√
D1 + αD2

.

Remark 3. When βt = 1 − α
t , we obtain Adagrad algorithm. Thus, this corollary implies that

Adagrad algorithm is uniformly stable at rate O(T r), 0 < r < 1. To the best of our knowledge, this is
the first result which shows that Adagrad algorithm is a uniformly stable algorithm. Our experiments
confirm the rate in the above corollary.

5 Stability of adaptive optimization methods with weight decay

Weight decay is one of common techniques when training neural network [5]. In this section, we
prove that weight decay can actually help improve the stability of adaptive optimization methods.
Our analysis focus on AdamW algorithm. Remind that the update of AdamW on two data set S and
S′ has the form

xt+1 = (1− ηtλ)xt − ηt
∇f(xt, zit)√
vt+1 + ε

(21)

vt+1 = βtvt + (1− βt)∇f(xt, zit)
2 (22)

x′t+1 = (1− ηtλ)x′t − ηt
∇f(x′t, z

′
it

)√
v′t+1 + ε

(23)

v′t+1 = βtv
′
t + (1− βt)∇f(x′t, z

′
it)

2 (24)

where λ is the weight decay parameter. We have the following theorem.

Theorem 5. Assume that assumptions (1), (2), (3) are satisfied. Suppose we run AdamW with step
size ηt and weight decay λ on S and S′ respectively. We then have that

∆t+1 ≤ (1− ηtλ)∆t + ηt

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µL(1− βt)
λ1 + ε

]
∆t

+ ηt

(
1− 1

n

)
µβt

2
√
λ1 + ε(λ1 + ε)

Σt + ηt
1

n

2√
λ1 + ε

µ.

6



The proof of this theorem is similar to the proof of Theorem 2. From now on, we fix βt = β, ηt = η,
the this inequality then becomes

∆t+1 ≤
{

1− η
(
λ−
(

1− 1

n

)
L√
λ1 + ε

[
1 +

µL(1− β)

λ1 + ε

])}
∆t

+ η

(
1− 1

n

)
µβ

2
√
λ1 + ε(λ1 + ε)

Σt + η
1

n

2√
λ1 + ε

µ. (25)

In addition, we also have that Σt+1 ≤ βΣt + (1− β)
(
1− 1

n

)
2Lµ∆t + 1

n (1− β)2µ2. Define

U :=

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µL(1− β)

λ1 + ε

]
, V :=

(
1− 1

n

)
µβ

2
√
λ1 + ε(λ1 + ε)

,

W :=

(
1− 1

n

)
2Lµ.

We then can rewrite our system of inequalities as[
∆t+1

Σt+1

]
≤
[
1− η(λ− U) ηV

(1− β)W β

] [
∆t

Σt

]
+

1

n

[
Y
Z

]
, (26)

Denote

At :=

[
∆t

Σt

]
B :=

[
Y
Z

]
R :=

[
1− η(λ− U) ηV

(1− β)W β

]
,

we then have that
‖R‖2F ≤ (1− η(λ− U))2 + η2V 2 + (1− β)2W 2 + β2. (27)

First, we show that the inequality (1 − β)2W 2 + β2 < 1 has a solution β ∈ (0, 1). By direct
computation, we can show that the equation (1− β)2W 2 + β2 = 1 has two distinct solutions β1 = 1

and β2 = W 2−1
W 2+1 . If W 2 > 1, then we have that 0 < β2 < β1 = 1. On the other hand, if W 2 < 1,

then we have that β2 < 0 < β1 = 1. Thus, we conclude that for any β ∈ (max{0, β2}, 1), we
always have that (1− β)2W 2 + β2 < 1.

Now, let’s assume that we choose β such that the above inequality holds. We can then choose η
small enough such that η2V 2 + (1− β)2W 2 + β2 < 1. Given β, η, we want to choose λ such that
(1 − η(λ − U))2 + η2V 2 + (1 − β)2W 2 + β2 < 1. First, we need 1 − η(λ − U) > 0, which is
equivalent to λ < U+ 1

η . In addition, we also want (1−η(λ−U))2 +η2V 2 +(1−β)2W 2 +β2 < 1,

or equivalently, λ > U +
1−
√

1−η2V 2−(1−β)2W 2−β2

η . Thus we can find λ such that ‖R‖F < 1. With
this choice of λ, we have that

‖At+1‖ ≤ α‖At‖+
1

n
B ≤ 1

n

B

1− α
, (28)

where α = ‖R‖F .

The above derivation shows that with an appropriate choice of β, η, λ, AdamW is a uniformly stable
algorithm. In addition, the stability bound is independent of the number of iterations.

6 Experiments
We study the generalization and stability of AOMs with different angles using synthetic to real-world
datasets. Following [14], for each training dataset, we first remove a random sample x and make two
copies of the training set. Then for the first training set, we randomly replace a data point with x. We
then train two models on these two train sets staring from the same initialization. At each iteration,
we record the Euclidean distance between the parameters of the two output models. We also record
the training loss and test loss of the first model, from which we calculate the generalization error
which is the absolute difference between train and test losses. We note that for each metric, we run 20
trials and plot the corresponding mean and variation. All the codes are included in the supplementary
material and will be publicly released.

6.1 Synthetic data
Datasets and Tasks. We consider both classification (CLS) and regression (REG) tasks. The details
for network architecture, training parameters and additional results can be found in Appendix J. Data
generation process is as follows.

1. For CLS, we generate 151 data points in 2D from three isotropic Gaussian blobs (3 classes)
where each blob has a standard deviation 1 and the same number of data points. We use the

7



0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

0.00
0.02
0.04
0.06
0.08
0.10
0.12

Eu
cli

de
an

 d
ist

an
ce

adagrad

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

|tr
ai

n-
te

st
| adagrad

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Eu
cli

de
an

 d
ist

an
ce

adagrad

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

|tr
ai

n-
te

st
| adagrad

Figure 1: Parameter distance and generalization error when using Adagrad to train neural networks
to solve CLS (left) and REG (right) tasks. Both metrics grow in similar fashion, which agree with
Corollary 3.

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

0.00
0.05
0.10
0.15
0.20

Eu
cli

de
an

 d
ist

an
ce adam

adagrad

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

|tr
ai

n-
te

st
| adam

adagrad

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.00
0.05
0.10
0.15
0.20
0.25

Eu
cli

de
an

 d
ist

an
ce adam

adagrad

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

|tr
ai

n-
te

st
| adam

adagrad

Figure 2: Comparing parameter distance and generalization error between Adam and Adagrad in the
classification (left) and regression (right). Results show that Adagrad is more stable than Adam.

package sklearn.datasets.make_blobs for this data generation procedure. We then randomly
split the data set into an original train set (with 31 data points) and a test set (with 120 data
points).

2. For REG, we generate 151 data points from the uniform distribution on [−1, 1]× [−1, 1].
The targets are then generated by the following formula: y = x2

1 + x2
2 + ε where the noise

ε ∼ N (0, 0.52). We then also randomly split the data set into an original train set (with 31
data points) and a test set (with 120 data points).

We choose a small training set in both tasks because we want our models to overfit the training data
easily. Thus, we can compare the generalization errors between different algorithms.

Stability and generalization of Adagrad. In this experiment, we consider AOMs with αt = 0, βt =
1 − α/t. This corresponds to Adagrad. For comparison with Adagrad, we consider Adam with
β1 = 0, β2 = 0.999. As you can see from Figure 1, the parameter distance in both tasks grow as
O(T r) where r < 1. This aligns with the result in Corollary 2. The generalization error in both tasks
also grows at a similar rate. Additionally, in Figure 2, we can also see that the parameter distance and
the generalization error of Adagrad always grow slower than the ones of Adam although we use the
same or bigger initial learning rate for Adagrad. This shows that letting βt goes to 1 at rate 1− α/t
make the AOM more stable than using fixed βt = 0.999.

Dependence of stability and generalization on fixed βt. In this experiment, we study the stability
and generalization of AOMs when αt = 0 and βt = β. This corresponds to Adam with β1 = 0 and
β2 = β.

0
20

0
40

0
60

0
80

0
10

00

iteration

0.0
0.1
0.2
0.3
0.4
0.5

Eu
cli

de
an

 d
ist

an
ce 2=0.01

2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
20

0
40

0
60

0
80

0
10

00

iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6

|tr
ai

n-
te

st
|

2=0.01
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
20

0
40

0
60

0
80

0
10

00

iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
g(

tra
in

_lo
ss

) 2=0.01
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
20

0
40

0
60

0
80

0
10

00

iteration

1.0
0.5
0.0
0.5
1.0

lo
g(

te
st

_lo
ss

) 2=0.01
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.0
0.5
1.0
1.5
2.0
2.5

Eu
cli

de
an

 d
ist

an
ce 2=0.01

2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.0
0.1
0.2
0.3
0.4

|tr
ai

n-
te

st
|

2=0.01
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

1.0
0.5
0.0
0.5
1.0

lo
g(

tra
in

_lo
ss

) 2=0.01
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

1.0
0.5
0.0
0.5
1.0
1.5

lo
g(

te
st

_lo
ss

) 2=0.01
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

Figure 3: Performances when solving the CLS (top) and REG (bottom) using Adam with different
β2. The bigger β2 is, the more stable the model gets. Left to right: parameter distance, generalization
error, train loss and test loss. The losses are plotted in log space.

From Figure 3, we can see that the stability of Adam depends on the parameter β2, in which the bigger
the β2 is, the more stable the algorithm is. The generalization error also exhibits the same pattern:
bigger β2 gives smaller generalization error. This observation aligns with Corollary 1 although the
bound there seems to be loose.

8



Weight decay helps improve the stability and generalization of Adam. In this experiment, we
study how weight decay affects the stability and generalization of Adam in each of CLS and REG
tasks, in which the weight decay is set at 5.0 and 1.0, respectively. For Adam with weight decay, we
use AdamW [49], and both optimizers use β1 = 0, β2 = 0.999.

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

0.00
0.05
0.10
0.15
0.20

Eu
cli

de
an

 d
ist

an
ce adam

adamw

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

0.0
0.1
0.2
0.3
0.4
0.5

|tr
ai

n-
te

st
| adam

adamw

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
g(

tra
in

_lo
ss

) adam
adamw

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

1.0
0.5
0.0
0.5
1.0

lo
g(

te
st

_lo
ss

) adam
adamw

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.00
0.05
0.10
0.15
0.20
0.25

Eu
cli

de
an

 d
ist

an
ce

adam
adamw

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

|tr
ai

n-
te

st
| adam

adamw

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
g(

tra
in

_lo
ss

) adam
adamw

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

1.0
0.5
0.0
0.5
1.0

lo
g(

te
st

_lo
ss

) adam
adamw

Figure 4: Performance comparison between Adam and AdamW when solving the CLS (top) and
REG (bottom). Less overfitting happens to AdamW than to Adam. Left to right: parameter distance,
generalization error, train loss and test loss. The losses are plotted in log space.

As we can see from Figure 4, AdamW has lower parameter distances and generalization errors
comparing to those of Adam in both classification and regression tasks. From the loss patterns, we
can also see that the model trained with Adam overfits the train data faster than the model trained with
AdamW. These observations show that weight decay helps improve the stability and generalization of
Adam, which validates the theory in Section 5.

6.2 Real data

We solve the image classification task on Cifar10 [50] dataset that has 50,000 train and 10,000 test
color images of the same resolution 3×32×32. In terms of data augmentation, we only apply mean
normalization for both train and test data. For model architecture, we use VGG11 [51], of which the
weights are initialized the same for all configurations and later trained with 60 epochs. Due to space
limitation, additional information is moved to Appendix K.

0 10 20 30 40 50 60
epoch

1
0
1
2
3
4
5

|tr
ai

n 
- t

es
t|

2=0.001
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0 10 20 30 40 50 60
epoch

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Eu
cli

di
an

 d
ist

an
ce

2=0.001
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0 10 20 30 40 50 60
epoch

0.0
0.1
0.2
0.3
0.4
0.5

Eu
cli

di
an

 d
ist

an
ce

2=0.001
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0 10 20 30 40 50 60
epoch

0.0
0.5
1.0
1.5
2.0

tra
in

_lo
ss

2=0.001
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

0 10 20 30 40 50 60
epoch

0
1
2
3
4
5

te
st

_lo
ss

2=0.001
2=0.25
2=0.5
2=0.75
2=0.9
2=0.999

Figure 5: Performances of models on Cifar10 dataset using VGG11. The models get better as β2

increases from 0 to 1. Left to right: generalization error (loss), parameter distance for the first
convolution layer, the last fully-connected layer, train loss, and test loss.

As seen in Figure 5, the results for Cifar10 agree with that of synthetic data. In detail, the more β2

increases, the better the model is in terms of all metrics measured: parameter distance, generalization
error, and both losses. In summary, both empirical experiments with real datasets support our
theoretical results, in that the bigger β2 is, the more stable and generalizable AOMs can get.

7 Conclusion

This work establishes a novel theoretical result for stability and generalization for adaptive optimizers,
which have been used intensively for, e.g., training neural networks. We show that AOMs depend
heavily on a single β2 value, providing helpful hints in tuning the training process, which is usually
dependent on many hyperparameters. Our empirical experiments, which consider the applications of
classification and regression, and employ synthetic to real-world datasets, reflect the results claimed
in our theory. By building this theoretical framework with empirical validation, we hope to stimulate
more work in this optimization area to help thoroughly answer the important question of choices:
given a specific case, which optimizer should we use?

9



References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[2] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[4] G. Hinton, N. Srivastava, , and K Swersky. Lecture 6d - a separate, adaptive learning rate for
each connection. Slides of Lecture Neural Networks for Machine Learning, 2012.

[5] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[6] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017.

[7] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. arXiv preprint arXiv:1002.4908, 2010.

[8] John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and parallelism
when data is sparse. In Advances in Neural Information Processing Systems, pages 2832–2840,
2013.

[9] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[10] Qianqian Tong, Guannan Liang, and Jinbo Bi. Calibrating the learning rate for adaptive gradient
methods to improve generalization performance. arXiv preprint arXiv:1908.00700, 2019.

[11] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the importance
of single directions for generalization. arXiv preprint arXiv:1803.06959, 2018.

[12] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, vol-
ume 20, pages 161–168. Curran Associates, Inc., 2008.

[13] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning
research, 2(Mar):499–526, 2002.

[14] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent, 2016.

[15] Ali Ramezani-Kebrya, Ashish Khisti, and Ben Liang. On the stability and convergence of
stochastic gradient descent with momentum, 2018.

[16] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes, from any initialization, 2019.

[17] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

[18] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems,
31:9793–9803, 2018.

[19] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and an empirical comparison to nesterov acceleration, 2018.

[20] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the
convergence of adaptive gradient methods for nonconvex optimization, 2020.

10



[21] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing
the generalization gap of adaptive gradient methods in training deep neural networks, 2020.

[22] Parvin Nazari, Davoud Ataee Tarzanagh, and George Michailidis. Adaptive first-and zeroth-
order methods for weakly convex stochastic optimization problems, 2020.

[23] Ahmet Alacaoglu, Yura Malitsky, and Volkan Cevher. Convergence of adaptive algorithms for
weakly convex constrained optimization, 2020.

[24] W. H. Rogers and T. Wagner. A finite sample distribution-free performance bound for local
discrimination rules. Annals of Statistics, 6:506–514, 1978.

[25] Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. Stability of randomized
learning algorithms. Journal of Machine Learning Research, 6(3):55–79, 2005.

[26] S. Shalev-Shwartz, O. Shamir, Nathan Srebro, and K. Sridharan. Learnability, stability and
uniform convergence. J. Mach. Learn. Res., 11:2635–2670, 2010.

[27] Alon Gonen and Shai Shalev-Shwartz. Fast rates for empirical risk minimization of strict saddle
problems, 2017.

[28] Andreas Maurer. A second-order look at stability and generalization. In Satyen Kale and
Ohad Shamir, editors, Proceedings of the 2017 Conference on Learning Theory, volume 65
of Proceedings of Machine Learning Research, pages 1461–1475, Amsterdam, Netherlands,
07–10 Jul 2017. PMLR.

[29] Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable
algorithms with nearly optimal rate, 2019.

[30] Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly
stable algorithms, 2020.

[31] Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and
hypothesis complexity, 2017.

[32] Dylan J. Foster, Spencer Greenberg, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik
Sridharan. Hypothesis set stability and generalization, 2020.

[33] Alexander Rakhlin, Sayan Mukherjee, and Tomaso Poggio. Stability results in learning theory,
2005.

[34] Yi Zhou, Yingbin Liang, and Huishuai Zhang. Generalization error bounds with probabilistic
guarantee for sgd in nonconvex optimization, 2019.

[35] Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
gradient descent, 2020.

[36] Ilja Kuzborskij and Christoph H. Lampert. Data-dependent stability of stochastic gradient
descent, 2018.

[37] Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative optimization
algorithms, 2018.

[38] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capabil-
ity of learning algorithms. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30, pages 2524–2533. Curran Associates, Inc., 2017.

[39] Daniel Russo and James Zou. Controlling bias in adaptive data analysis using information
theory. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 1232–1240, Cadiz, Spain, 09–11 May 2016. PMLR.

[40] Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, and Daniel M.
Roy. Information-theoretic generalization bounds for sgld via data-dependent estimates, 2020.

11



[41] Sharu Theresa Jose and Osvaldo Simeone. Information-theoretic generalization bounds for
meta-learning and applications, 2021.

[42] Huan Xu and Shie Mannor. Robustness and generalization, 2010.

[43] Tom Zahavy, Bingyi Kang, Alex Sivak, Jiashi Feng, Huan Xu, and Shie Mannor. Ensemble
robustness and generalization of stochastic deep learning algorithms, 2017.

[44] Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks, 2017.

[45] V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks,
10(5):988–999, 1999.

[46] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to Statistical Learning
Theory, pages 169–207. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[47] J. F. Bonnans and A. Shapiro. Optimization problems with perturbations: A guided tour. SIAM
Rev., 40:228–264, 1998.

[48] A. Barakat, P. Bianchi, W. Hachem, and Sh. Schechtman. Stochastic optimization with momen-
tum: convergence, fluctuations, and traps avoidance, 2020.

[49] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[51] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

12



(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13



A Proof of Lemma 1

In our analysis, xS is the output of an optimization algorithm at a particular time T when the algorithm
is used to minimized the empirical risk FS(x). For convenience, we also denote x∗S an empirical risk
minimizer, i.e. FS(x∗S) = infx∈Ω FS(x). Note that xS and x∗S are in general not the same estimator,
e.g, in deep learning we can only find local minimums due to non-convexity of the loss landscapes
and early stopping is usually employed to terminate optimizers before they reach local minimums.
For simplicity, we assume that there is some x∗ ∈ Ω such that F (x∗) = infx∈Ω F (x).

Recall that R(xS) = F (xS) − infx∈Ω F (x). Given this set up, the excess risk decomposition is
usually done in the following manner:

R(xS) = F (xS)− FS(xS)︸ ︷︷ ︸
T1

+FS(xS)− FS(x∗)︸ ︷︷ ︸
T2

+FS(x∗)− F (x∗)︸ ︷︷ ︸
T3

. (29)

Term T1 is the generalization of error of the model xS . Term T2 is the empirical risk difference
between the model xS and the population risk minimizer x∗. Term T3 is the generalization error of
x∗. By taking the expectation of (29) with respect to the training set S and notice that E[FS(x∗)−
F (x∗)] = 0, we arrive at

ES [R(xS)] = ES [F (xS)− FS(xS)] + ES [FS(xS)− FS(x∗)]

= ES [F (xS)− FS(xS)] + ES [FS(xS)− FS(x∗S)] + ES [FS(x∗S)− FS(x∗)]︸ ︷︷ ︸
≤0

≤ ES [F (xS)− FS(xS)]︸ ︷︷ ︸
Egen

+ES [FS(xS)− FS(x∗S)]︸ ︷︷ ︸
Eopt

, (30)

where Egen and Eopt are the expected generalization error and the expected optimization error
respectively.

B Proof of Lemma 2

Let S and S′ be two samples of size n differing in only a single example, and let z ∈ Z be an arbitrary
example. Consider running AOM on sample S and S′, respectively. Let A = {δt0 = 0}, we then
have that
E|f(xT ; z)− f(x′T ; z)| = P(A)E[|f(xT ; z)− f(x′T ; z)||A] + P(Ac)E[|f(xT ; z)− f(x′T ; z)||Ac]

≤ µE[‖xT − x′T ‖|A] + 2P(Ac) sup
x,z
|f(x; z)|

≤ µE[‖xT − x′T ‖|A] + 2MP(Ac).
Let i∗ be the position where S and S′ are different and denote the first time AOM uses the example
zi∗ by the random variable I . Since {I > i0} ⊂ {δi0 = 0}, we have that

P(Ac) = P({δt0 6= 0}) ≤ P({I ≤ t0}) ≤
t0
n
.

C Proof of Theorem 2

Proof. For any t > t0, we have that

δt =

∥∥∥∥∥xt − ηt∇f(xt, zit)√
vt+1 + ε

− x′t + ηt
∇f(x′t, z

′
it

)√
v′t+1 + ε

∥∥∥∥∥
2

≤ ‖xt − x′t‖2 + ηt

∥∥∥∥∥∇f(xt, zit)√
vt+1 + ε

−
∇f(x′t, z

′
it

)√
v′t+1 + ε

∥∥∥∥∥
2

= ‖xt − x′t‖2 + ηtRt,
where we define

Rt =

∥∥∥∥∥∇f(xt, zit)√
vt+1 + ε

−
∇f(x′t, z

′
it

)√
v′t+1 + ε

∥∥∥∥∥
2

.

We consider two cases which depends on the realization of the selected index it.

14



Case 1: With probability 1− 1
n , we have zit = z′it . Thus,

Rt :=

∥∥∥∥∥∇f(xt, zit)√
vt+1 + ε

− ∇f(x′t, zit)√
v′t+1 + ε

∥∥∥∥∥
2

≤
∥∥∥∥∇f(xt, zit)√

vt+1 + ε
− ∇f(x′t, zit)√

vt+1 + ε

∥∥∥∥
2

+

∥∥∥∥∥∇f(x′t; zit)√
vt+1 + ε

− ∇f(x′t; zit)√
v′t+1 + ε

∥∥∥∥∥
2

= It + Jt,
where we denote

It :=

∥∥∥∥∇f(xt, zit)√
vt+1 + ε

− ∇f(x′t, zit)√
vt+1 + ε

∥∥∥∥
2

,

Jt :=

∥∥∥∥∥∇f(x′t; zit)√
vt+1 + ε

− ∇f(x′t; zit)√
v′t+1 + ε

∥∥∥∥∥
2

.

We now derive bounds for both It and Jt. We have

It =

 d∑
j=1

(
∇jf(xt, zit)√
vt+1,j + ε

− ∇jf(x′t; zit)√
vt+1,j + ε

)2
1/2

=

 d∑
j=1

(
1

vt+1,j + ε

)
(∇jf(xt, zit)−∇jf(x′t; zit))

2

1/2

≤

 d∑
j=1

(
1

λ1 + ε

)
(∇jf(xt, zit)−∇jf(x′t; zit))

2

1/2

=
1√

λ1 + ε
‖∇f(xt, zit)−∇f(x′t, zit)‖2

≤ L√
λ1 + ε

‖xt − x′t‖2,

where the first and last inequalities follows from assumptions (3) and (1) respectively.

Jt =

 d∑
j=1

∇jf(x′t, zit)√
vt+1,j + ε

− ∇jf(x′t; zit)√
v′t+1,j + ε

2


1/2

=

 d∑
i=1

∇jf(x′t, zit)
2

 1
√
vt+1,i + ε

− 1√
v′t+1,j + ε

2


1/2

≤

 d∑
i=1

µ2

 1
√
vt+1,i + ε

− 1√
v′t+1,j + ε

2


1/2

= µ

∥∥∥∥∥ 1√
vt+1 + ε

− 1√
v′t+1 + ε

∥∥∥∥∥
2

,

where the inequality is from assumption (1).

By Lemma 4, we deduce that

Rt ≤
L√
λ1 + ε

‖xt − x′t‖2 + µ

∥∥∥∥∥ 1√
vt+1 + ε

− 1√
v′t+1 + ε

∥∥∥∥∥
2

≤ L√
λ1 + ε

‖xt − x′t‖2 +
µ

2
√
λ1 + ε(λ1 + ε)

‖vt+1 − v′t+1‖2.

Since in this case it = i′t, we further have that

15



‖vt+1 − v′t+1‖2
= ‖βtvt + (1− βt)∇f(xt, zit)

2 − βtv′t − (1− βt)∇f(x′t, zit)
2‖2

≤ βt‖vt − v′t‖2 + (1− βt)‖∇f(xt, zit)
2 −∇f(x′t, zit)

2‖2

= βt‖vt − v′t‖2 + (1− βt)

 d∑
j=1

(
∇jf(xt, zit)

2 −∇jf(x′t, zit)
2
)21/2

= βt‖vt − v′t‖2 + (1− βt)

 d∑
j=1

(∇jf(xt, zit) +∇jf(x′t, zit))
2(∇jf(xt, zit)−∇jf(x′t, zit))

2

1/2

≤ βt‖vt − v′t‖2 + (1− βt)2µ

 d∑
j=1

(∇jf(xt, zit)−∇jf(x′t, zit))
2

1/2

= βt‖vt − v′t‖2 + 2µ(1− βt)‖∇f(xt, zit)−∇f(x′t, zit)‖2
≤ βt‖vt − v′t‖2 + 2µL(1− βt)‖xt − x′t‖2,

where the second inequality follows from the fact that (a+ b)2 ≤ 2(a2 + b2) and the assumption (1).
Thus, we deduce that

Rt ≤
L√
λ1 + ε

‖xt − x′t‖2 +
µ

2
√
λ1 + ε(λ1 + ε)

(βt‖vt − v′t‖2 + 2µL(1− βt)‖xt − x′t‖2)

=
L√
λ1 + ε

‖xt − x′t‖2 +
µβt

2
√
λ1 + ε(λ1 + ε)

‖vt − v′t‖2 +
µ2L(1− βt)√
λ1 + ε(λ1 + ε)

‖xt − x′t‖2

=
L√
λ1 + ε

[
1 +

µ2(1− βt)
λ1 + ε

]
‖xt − x′t‖2 +

µβt

2
√
λ1 + ε(λ1 + ε)

‖vt − v′t‖2.

Thus with probability 1− 1
n , we obtain

Rt≤
L√
λ1 + ε

[
1 +

µ2(1− βt)
λ1 + ε

]
‖xt − x′t‖2

+
µβt

2
√
λ1 + ε(λ1 + ε)

‖vt − v′t‖2.

Case 2: With probability 1
n , we have zit 6= z′it . Thus,

Rt ≤
∥∥∥∥∇f(xt, zit)√

vt+1 + ε

∥∥∥∥
2

+

∥∥∥∥∇f(x′t, z
′
it

)
√
vt+1 + ε

∥∥∥∥
2

≤

 d∑
j=1

∇jf(xt, zit)
2

vt+1,j + ε

1/2

+

 d∑
j=1

∇jf(x′t, z
′
it

)2

v′t+1,j + ε

1/2

≤
[
∑d
j=1∇jf(xt, zit)

2]1/2
√
λ1 + ε

+
[
∑d
j=1∇jf(x′t, z

′
it

)2]1/2
√
λ1 + ε

=
‖∇f(xt, zit)‖2√

λ1 + ε
+
‖∇f(x′t, z

′
it

)‖2√
λ1 + ε

≤ 2√
λ1 + ε

µ,

where the second inequality follows from assumption (1).

Thus with probability 1
n , we have

Rt ≤
2√

λ1 + ε
µ.

16



Thus, we obtain

δt+1 ≤ δt + ηt

(
1− 1

n

)
L√
λ1 + ε

[
1 +

µ2(1− βt)
λ1 + ε

]
δt

+ ηt

(
1− 1

n

)
µβt

2
√
λ1 + ε(λ1 + ε)

σt + ηt
1

n

2√
λ1 + ε

µ.

By taking the expectation conditioned over δt0 = 0 of the above inequality, we get the conclusion of
the theorem.

D Proof of Theorem 3

Proof. For any t > t0, we have that
‖vt+1 − v′t+1‖2 ≤ ‖βtvt + (1− βt)∇f(xt; zit)

2 − βtv′t − (1− βt)∇f(x′t; z
′
it)

2‖2
≤ βt‖vt − v′t‖2 + (1− βt)‖∇f(xt; zit)

2 −∇f(x′t; z
′
it)

2‖2
= βt‖vt − v′t‖2 + (1− βt)Nt,

where we define
Nt = ‖∇f(xt; zit)

2 −∇f(x′t; z
′
it)

2‖2.
We again consider two cases which depends on the realization of the selected index it.
Case 1: With probability 1− 1

n , we have zit = z′it . Thus,
Nt = ‖∇f(xt, zit)

2 −∇f(x′t, zit)
2‖2

=

 d∑
j=1

(
∇jf(xt, zit)

2 −∇jf(x′t, zit)
2
)21/2

=

[
d∑
j=1

(∇jf(xt, zit) +∇jf(x′t, zit))
2(∇jf(xt, zit)−∇jf(x′t, zit))

2

]1/2

≤ 2µ

 d∑
j=1

(∇jf(xt, zit)−∇jf(x′t, zit))
2

1/2

= 2µ‖∇f(xt, zit)−∇f(x′t, zit)‖2
≤ 2Lµ‖xt − x′t‖2,

where the first inequality follows from the fact that (a+ b)2 ≤ 2(a2 + b2) and the assumption (1).

Thus with probability 1− 1
n , we have that

Nt ≤ 2Lµδt.

Case 2: With probability 1
n , we have zit 6= z′it . Thus

Nt ≤ ‖∇f(xt, zit)
2‖2 + ‖∇f(x′t, z

′
it)

2‖2

=

 d∑
j=1

∇jf(xt, zit)
4

1/2

+

 d∑
j=1

∇jf(x′t, z
′
it)

4

1/2

≤
d∑
j=1

∇jf(xt, zit)
2 +

d∑
j=1

∇jf(x′t, z
′
it)

2

= ‖∇f(xt, zit)‖22 + ‖∇f(x′t, z
′
it)‖

2
2

≤ 2µ2,
where the first inequality follows from the fact that for a1, . . . , ad ≥ 0, (a1+. . .+ad)

2 ≥ a2
1+. . .+a2

d.

Thus with probability 1
n , we have that

Nt ≤ 2µ2.

17



By combining the above two cases, we obtain

σt+1 ≤ βtσt + (1− βt)
(

1− 1

n

)
2Lµδt +

1

n
(1− βt)2µ2.

Taking the expectation conditioned over δt0 = 0 of the above inequality, we get the conclusion of the
theorem.

E Proof of Lemma 3

Proof. By substituting ηt = c
t and βt = 1− αt into the matrix At, we have that

At =

[
1 + c

tUt
c
tVt

αtW 1− αt

]
For any v = (v1, v2) ∈ R2 such that v2

1 + v2
2 = 1, we have that

‖Atv‖22 =

∥∥∥∥v1 + c
tUtv1 + c

tVtv2

αtWv1 + v2 − αtv2

∥∥∥∥2

2

=
(
v1 +

c

t
Utv1 +

c

t
Vtv2

)2

+ (αtWv1 + v2 − αtv2)
2

= v2
1 + 2

cv1

t
(Utv1 + Vtv2) +

c2(Utv1 + Vtv2)2

t2

+ v2
2 + 2v2αt(Wv1 − v2) + α2

t (Wv1 − v2)2

≤ 1 +
2c

t

√
U2
t + V 2

t + c2
U2
t + V 2

t

t2
+ 2αt

√
W 2
t + 1 + α2

t (W
2
t + 1)

≤ 1 +
2c

t

√
U2 + V 2 + c2

U2 + V 2

t2
+ 2αt

√
W 2 + 1 + α2

t (W
2 + 1)

≤ 1 +
2c

t

√
U2 + V 2 + c2

U2 + V 2

t2
+ αt

(
2
√
W 2 + 1 + (W 2 + 1)

)
≤ exp

[
2c

t

√
U2 + V 2 + c2

U2 + V 2

t2
+ αt

(
2
√
W 2 + 1 + (W 2 + 1)

)]
.

Where we have used the fact that |v1|, |v2| ≤ 1, the Cauchy–Schwarz inequality and 1 + x ≤ ex for
all x > 0.

Thus we deduce that

‖At‖2 ≤
{
exp
(2c

t

√
U2 + V 2 + c2

U2 + V 2

t2
+ αt

(
2
√
W 2 + 1 + (W 2 + 1)

))}1/2

= exp

(
c

t

√
U2 + V 2 + c2

U2 + V 2

2t2
+ αt

(√
W 2 + 1 +

1

2
(W 2 + 1)

))
.

Denote D1 = U2 + V 2, D2 =
√
W 2 + 1 + 1

2 (W 2 + 1), we can then rewrite

‖At‖2 ≤ exp
(
c

t

√
D1 +

c2

2t2
D1 + αtD2

)
.

Thus, we obtain the desired conclusion of the lemma.

F Proof of Theorem 4

Proof. Denote

Ht :=

∥∥∥∥[∆t

Σt

]∥∥∥∥
2

By taking the norm on both sides of the relation (4), we obtain

Ht+1 ≤ ‖At‖Ht +
1

n

√
c2Y 2

t2
+ α2

tZ
2

≤ exp
(
c

t

√
D1 +

c2

t2
D1

2
+ αtD2

)
Ht +

1

n

(c
t
Y + αtZ

)
.

18



By expanding the above inequality, for any T > t0 we have

HT ≤
T∑

t=t0+1

[
T∏

k=t+1

exp

(
c

k

√
D1 +

c2

k2

D1

2
+ αkD2

)]
× 1

n

(c
t
Y + αtZ

)

=
c

n
Y

T∑
t=t0+1

[
T∏

k=t+1

exp

(
c

k

√
D1 +

c2

k2

D1

2
+ αkD2

)]
1

t

+
1

n
Z

T∑
t=t0+1

[
T∏

k=t+1

exp

(
c

k

√
D1 +

c2

k2

D1

2
+ αkD2

)]
αt

≤ c

n
Y

T∑
t=t0+1

exp

(
c
√
D1

T∑
k=t+1

1

k
+
c2D1

2

T∑
k=t+1

1

k2
+D2

T∑
k=t+1

αt

)
1

t

+
1

n
Z

T∑
t=t0+1

exp

(
c
√
D1

T∑
k=t+1

1

k
+
c2D1

2

T∑
k=t+1

1

k2
+D2

T∑
k=t+1

αt

)
αt

=
c

n
Y

T∑
t=t0+1

exp

(
c
√
D1 log

(
T

t

)
+ γ

c2D1

2
+D2

T∑
k=t+1

αt

)
1

t

+
1

n
Z

T∑
t=t0+1

exp

(
c
√
D1 log

(
T

t

)
+ γ

c2D1

2
+D2

T∑
k=t+1

αt

)
αt

=
c

n
Y exp

(
γ
c2D1

2

)
×

T∑
t=t0+1

exp

(
D2

T∑
k=t+1

αt

)(
T

t

)c√D1 1

t

+
1

n
Zexp

(
γ
c2D1

2

)
×

T∑
t=t0+1

exp

(
D2

T∑
k=t+1

αt

)(
T

t

)c√D1

αt

where we define

γ =

∞∑
k=1

1

k2
.

Thus, we obtain

Ht ≤
1

n
exp

(
γ
c2D1

2

)
×

T∑
t=t0+1

exp

(
D2

T∑
k=t+1

αt

)(
T

t

)c√D1

×
(

1

t
cY + αtZ

)
which the conclusion of the theorem.

19



G Proof of Corollary 2

Proof. By the assumption, we have

Ht ≤
1

n
exp

(
γ
c2D1

2

)
×

T∑
t=t0+1

exp

(
D2α

T∑
k=t+1

1

k

)(
T

t

)c√D1
(

1

t
cY +

1

t
αZ

)

=
1

n
exp

(
γ
c2D1

2

) T∑
t=t0+1

(
T

t

)αD2
(
T

t

)c√D1
(

1

t
cY +

1

t
αZ

)

=
1

n
(cY + αZ)exp

(
γ
c2D1

2

) T∑
t=t0+1

(
T

t

)c√D1+αD2 1

t

=
1

n
(cY + αZ)exp

(
γ
c2D1

2

)
T c
√
D1+αD2

T∑
t=t0+1

t−c
√
D1−αD2−1

≤ 1

n
(cY + αZ)exp

(
γ
c2D1

2

)
T c
√
D1+αD2

∫ T

t0

x−c
√
D1−αD2−1dx

≤ 1

n
(cY + αZ)exp

(
γ
c2D1

2

)
T c
√
D1+αD2

c
√
D1 + αD2

1

tc
√
D1+αD2

0

.

H Proof of Corollary 3

Proof. By Lemma 2, we have that
R(f(., z)) := E|f(xT ; z)− f(x′T ; z)|

≤ 2M
t0
n

+ µ∆T

≤ 2M
t0
n

+
1

n
(cY + αZ)× exp

(
γ
c2D1

2

)
T c
√
D1+αD2

c
√
D1 + αD2

µ

tc
√
D1+αD2

0

Denote
A := c

√
D1 + αD2

B := (cY + αZ)× exp
(
γ
c2D1

2

)
µ

c
√
D1 + αD2

We then can rewrite

R(f(., z)) ≤ 1

n

[
2Mt0 +B

(
T

t0

)A]
We want to choose t0 to minimize the right hand-side. We consider the function

g : x 7→ 2Mx+B

(
T

x

)A
We have

g′(x) = 2M −AB TA

xA+1

Thus the function is approximately minimize when

t0 =

(
AB

2M

) 1
A+1

T
A

A+1

Substitute this t0 into the stability bound, we obtain

R(f(., z)) ≤ 1

n

2M

(
AB

2M

) 1
A+1

+
B(

AB
2M

) A2

A+1

T A
A+1 .

20



I Supportive lemmas

Lemma 4. Let f(., z) be µ-Lipschitz and L-smooth for all z. Assume that the assumption (3) is
satisfied. For any t ∈ N, we then have

K :=

∥∥∥∥∥ 1√
vt+1 + ε

− 1√
v′t+1 + ε

∥∥∥∥∥
2

≤ 1

2
√
λ1 + ε(λ1 + ε)2

‖vt+1 − v′t+1‖2

Proof. We have

K =

 d∑
j=1

 1
√
vt+1,j + ε

− 1√
v′t+1,j + ε

2


1/2

=

 d∑
j=1

√vt+1,j + ε−
√
v′t+1,j + ε

√
vt+1,j + ε

√
v′t+1,j + ε

2
1/2

≤

 d∑
j=1

(√
vt+1,j + ε−

√
v′t+1,j + ε

)2

(λ1 + ε)(λ1 + ε)


1/2

=
1

λ1 + ε

[
d∑
i=1

(√
vt+1,j + ε−

√
v′t+1,j + ε

)2
]

=
1

λ1 + ε

 d∑
j=1

(vt+1,j − v′t+1,j)
2(√

vt+1,j + ε+
√
v′t+1,j + ε

)2


1/2

≤ 1

2
√
λ1 + ε(λ1 + ε)

‖vt+1 − v′t+1‖2.

J Additional Training Parameters for Synthetic Data

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
ss

adagrad_train_loss
adagrad_test_loss

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

0.50
0.25
0.00
0.25
0.50
0.75
1.00
1.25

lo
ss

adagrad_train_loss
adagrad_test_loss

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
ss

adam_train_loss
adam_test_loss

0
10

0
20

0
30

0
40

0
50

0
60

0
iteration

2.0
1.5
1.0
0.5
0.0
0.5
1.0

lo
ss

adam_train_loss
adam_test_loss

Figure 6: Train loss and test loss of CLS and REG tasks for Adagrad (left) and Adam (right).

For CLS training, we use a shallow neural network with one hidden fully-connected layer, which has
1024 neurons and an output of 3 classes. For the last layer, we use cross-entropy loss. For optimizser,
we use Adagrad with learning rate 0.001. For comparison, we also run Adam with learning rate
0.0001 and β1 = 0, β2 = 0.999. A batch size of 3 is used in this task.

Compared to CLS task, we only use 128 neurons for the hidden layer and MSE loss and batch size of
5 in REG task. In this case, we use Adam with learning rate 0.001 and β1 = 0, β2 = 0.999.

Finally, for each experiment, we run 20 trials and then calculate the mean and standard deviation
before plotting the results.

21



K Additional Training Parameters for Real Data

For the Cifar10 classification task, we train the model using 1 GPU with batch size 32. Similar to the
synthetic setting, For each setting, we run 20 trials and for each trial, we run 60 epochs to calculate
means and standard deviations. In terms of weight initialization for convolution and fully-connected
layers of VGG11, we use He initialization method (“fan-out” mode for convolution). For more details,
please see the code attached to this supplemental material.

22


	Introduction
	Related Work
	Preliminaries
	Excess risk decomposition
	Algorithmic stability
	Adaptive optimization methods

	Stability of adaptive optimization methods
	Stability of adaptive optimization methods with weight decay
	Experiments
	Synthetic data
	Real data

	Conclusion
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of Corollary 2
	Proof of Corollary 3
	Supportive lemmas
	Additional Training Parameters for Synthetic Data
	Additional Training Parameters for Real Data

