
978-1-5386-1953-7/17/$31.00 ©2017 IEEE 1 

Linear Load Model for Robust Power System 

Analysis  
 

Marko Jereminov1*, Amritanshu Pandey1*, Hyun Ah Song2*, Bryan Hooi2*, Christos Faloutsos2, Larry Pileggi1

1Dept. of Electrical and Computer Engineering 

Carnegie Mellon University 

Pittsburgh, PA 

2School of Computer Science 

Carnegie Mellon University 

Pittsburgh, PA 

Abstract — Extension of constant power (PQ) load models to more 

accurately represent the electric load behavior in the grid has 

produced models (e.g. ZIP) that have been shown to improve the 

accuracy of load characterization, but like PQ load models, they 

introduce nonlinearities in the power flow formulation that make 

it more susceptible to divergence or convergence to a non-physical 

solution. In this paper a first-order load model (BIG) based on 

equivalent circuit principles is proposed that offers accuracy 

comparable to a ZIP model, but unlike ZIP, is linear and captures 

angle information when used in a current-voltage based power 

flow formulation. Advanced machine learning techniques are 

applied to fit parameters for the BIG model and traditional models 

using time series measurement data from our university campus 

and from μPMUs installed at Lawrence Berkeley National 

Laboratory. The results show that the linear BIG model 

characterizes the load behavior far better than PQ load models 

while having a similar fit to that of more complex non-linear ZIP 

load model while offering complexity and modeling benefits. 

Index Terms— aggregated load model, equivalent circuit 

formulation, linear formulation, machine learning, powerflow 

analysis. 

I. INTRODUCTION 

Power flow analysis is a special case of nonlinear AC 
frequency domain analysis wherein the power system is 
modeled and analyzed at a single frequency. For a traditional 
power flow formulation, the electric load and generation 
models are connected via an impedance network and the flow 
of power is formulated to solve for the complex voltages in 
polar coordinates. This formulated system of nonlinear 
equations is solved via Newton methods that can sometimes 
diverge or converge to a non-physical solution.  

Interestingly, some of the challenges with convergence are 
related to the models that are used for aggregated load and 
generation in the system (PQ and PV buses respectively), which 
are based on non-physical real and reactive power (P and Q) 
representations. For instance, the constant PQ load model 
represents the aggregated electric load behavior in a manner 
that does not match what is observed in the field. Consider the 
B.C. Hydro system wherein it was shown that decreasing the 
substation voltage by 1% decreased the active and reactive 
power demand by 1.5% and 3.4%, respectively [1]. The loads 
based on constant power variables are independent of the 
complex voltage magnitude or angle, therefore, the decrease in 
complex voltage must have a corresponding increase in 
complex current (to maintain constant power), a behavior not 
exhibited by most individual electric loads. Improvements to 
these load models (e.g. ZIP model, exponential) can better 
characterize the load model by incorporating the voltage 

magnitude dependency; however, similar to that of PQ load 
model, they introduce non-linearities in the formulation. 
Furthermore, it has been shown that ZIP and exponential load 
models cannot characterize load characteristics on constant 
voltage node in the system (e.g. load connected to a generator 
node) [2] due to non-dependency on voltage angle at the node. 

To derive an appropriate model for an aggregated load, we 
begin with consideration of the behavior of actual loads. 
Referring to the measurement data for a randomly chosen 48-
hour period for the Carnegie Mellon University (CMU) campus 
in Fig. 1, the load current variation (𝐼𝑅 and 𝐼𝐼) can be attributed 
to two factors: 1) system voltage variation and 2) variation in 
actual load demand (i.e. devices turning on and off). We 
therefore seek a model form that can accurately capture the 
voltage dependency (magnitude and angle) of the system load, 
which is clearly not the case with PQ or ZIP models. Such a 
load model template can then be characterized using machine 
learning algorithms that can predict system load variability 
based on the time series data and identify the time interval 
breakpoints for which a new set of model parameters are 
required.  

 
Fig. 1: CMU Dataset - current (real and imaginary), and voltage over time (2 

days) 

Toward this goal, we propose an equivalent circuit load 
model that can capture the fundamental behavior of any 
aggregated load. For a single frequency, the mathematical 
relationship between the voltage and current phasors in terms 
of an equivalent circuit requires only a first order model that 
includes a conductance (G) and susceptance (B) in parallel. At 
nominal voltage, this model can be uniquely characterized to 
match the nominal P and Q, yet still represent the potential or 
variation of power with voltage. For example, if G and B are 
linear, and G is positive, this first order model represents a 
quadratic drop in real load power with decrease in voltage. To 
enable complete representation of voltage change sensitivity, a 
complex current source (I) is added in parallel with B and G, 
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such that the signs of G and B can be now used to provide a first 
order (linear) approximation of load behavior as a function of 
voltage. To model loads over a larger expected range of voltage 
magnitude, a nonlinear G and/or B can be used as demonstrated 
in [2]. Importantly, circuit theory provides a framework for 
these models to be derived reliably and efficiently. In this paper, 
we will show how circuit methods can be used to derive model 
templates and uniquely fit the B, I, and G parameter values to 
best match the load behavior. 

Importantly, when the linear first order BIG model is 
utilized within the equivalent circuit formulation for power 
flow that was introduced in [3]-[7], it dramatically decreases the 
complexity of the power flow problem while concurrently 
increasing the accuracy of the solution. For example, a linear 
BIG model can be used to represent the load more accurately 
than a PQ model and similar to that of ZIP model, yet result in 
a linear set of equations for that load bus within the power flow 
formulation. Furthermore, the BIG load model can capture the 
voltage angle information since the equivalent circuit 
formulation represents the load model as a function of complex 
voltage variables ( 𝑉𝑅 , 𝑉𝐼) . As previously stated, this is in 
contrast to ZIP models and exponential models that only 
capture voltage magnitude information [2].  

An important facet of accurately modeling the electric load 
behavior using the proposed equivalent circuit model is the 
estimation of the BIG parameters from measurement data or 
forecasting techniques. Bulk installations of phasor 
measurement units (PMUs) on the transmission system and of 
remote terminal units (RTUs) on the distribution system are 
now providing a tremendous amount of actual electric load and 
generation data. Machine learning techniques can be used to 
process this collected times series data to calculate accurate BIG 
parameters.  

We developed a novel machine learning algorithm, 
PowerFit, that is based on the most advanced machine learning 
methods. We evaluate PowerFit using real electric load 
measurement data that was collected from the Carnegie Mellon 
University campus (Fig. 1) and from the μPMUs installed at 
Lawrence Berkeley National Laboratories (LBNL) [8]. 
PowerFit automatically determines the time points where the 
load model (BIG parameter values) should transition to a new 
set of parameters using an iterative merging process. The model 
error and model complexity are balanced based on the Bayesian 
Information Criterion (BIC) measure [9]. The results show that 
the BIG model with the proposed machine-learning algorithm 
can fit the measured data from CMU and LBNL accurately 
within error measure of less than 2.0 % with less than 4 
segments per day. Furthermore, it is shown that the linear BIG 
model characterizes the LBNL load behavior far better than the 
non-linear PQ load model and similar to that of more complex 
non-linear ZIP load model, yet offers dramatically simplified 
power flow complexity and capturing of angle information.  

II. CIRCUIT THEORETIC LOAD MODEL 

A first-order equivalent circuit can be used to represent any 

phase and magnitude relationship between current and voltage 

phasors at a single frequency. A first-order load impedance can 

be represented as an equivalent circuit model with a 

conductance (G) and susceptance (B) in series or parallel, and 

as such, would capture the load behavior wherein the current 

flowing into the load bus is directly proportional to the voltage 

across it. However, the aggregated loads will sometimes behave 

contrary to the aforementioned behavior; for example, consider 

an aggregated load with a large percentage of induction motors 

that run to maintain a constant mechanical torque. Such loads 

are likely to exhibit a behavior wherein the current flowing into 

the load bus is inversely proportional to the applied voltage. 

This behavior is similar to that which is represented by a 

constant PQ load model, where the increase in voltage has no 

influence on the constant power P and would conceptually 

correspond to a decrease in current. 

To begin from a circuit modeling perspective, we consider 

the driving point load model [10]-[11] for a generalized power 

flow load that could capture both of the positive and negative 

correlation between the current and voltage characteristics. We 

first consider the governing complex circuit equations [3]-[7] 

that would be representative of the PQ load model: 

𝐼𝑅,𝑃𝑄 + 𝑗𝐼𝐼,𝑃𝑄 =
𝑃𝑉𝑅 + 𝑄𝑉𝐼

𝑉𝑅
2 + 𝑉𝐼

2 + 𝑗
𝑃𝑉𝐼 − 𝑄𝑉𝑅

𝑉𝑅
2 + 𝑉𝐼

2  (1) 

where 𝑃  and 𝑄  are known constant coefficients of real and 

reactive powers respectively, and 𝑉𝑅, 𝑉𝐼, 𝐼𝑅,𝑃𝑄 and 𝐼𝐼,𝑃𝑄 are the 

real and imaginary voltages and current of the PQ load model. 

We can further split the complex current function from (1) 

and linearize it to obtain: 

𝐼𝑅,𝑃𝑄
𝑘+1 = 2𝐼𝑅,𝑃𝑄

𝑘 +
𝜕𝐼𝑅,𝑃𝑄

𝜕𝑉𝑅
𝑉𝑅

𝑘+1 +
𝜕𝐼𝑅,𝑃𝑄

𝜕𝑉𝐼
𝑉𝐼

𝑘+1 (2) 

𝐼𝐼,𝑃𝑄
𝑘+1 = 2𝐼𝐼,𝑃𝑄

𝑘 +
𝜕𝐼𝐼,𝑃𝑄

𝜕𝑉𝑅
𝑉𝑅

𝑘+1 +
𝜕𝐼𝐼,𝑃𝑄

𝜕𝑉𝐼
𝑉𝐼

𝑘+1 (3) 

where the constant terms represent the values of real and 

imaginary currents known from 𝑘𝑡ℎ  iteration and are 

represented by a constant current source. Note that partial 

derivatives for which the real and imaginary currents are 

directly proportional to the voltages across the respective split 

circuit models, i.e. real and imaginary, are represented as a 

conductance (G), while the partial derivatives for which real 

and imaginary currents are directly proportional to the voltages 

of other sub circuits are represented by a voltage controlled 

current source.   
Furthermore, it can be shown that the respective partial 

derivatives defined in (2) and (3) have the following properties: 

𝜕𝐼𝑅,𝑃𝑄

𝜕𝑉𝑅
=

𝜕𝐼𝐼,𝑃𝑄

𝜕𝑉𝐼
≡ 𝐺 < 0 (4) 

|
𝜕𝐼𝑅,𝑃𝑄

𝜕𝑉𝐼
| = |

𝜕𝐼𝐼,𝑃𝑄

𝜕𝑉𝑅
| ≡ 𝐵 (5) 

From (4) and (5) we can observe that the governing equations 

of a PQ load model, i.e. (1)-(3), can be translated to an 

equivalent circuit corresponding to a constant current source in 

parallel with the susceptance and a negative conductance that 

compensates for the inverse relationship between the current 

and voltage of the load. With this model, as the voltage across 

the load increases, the current will decrease and vice versa. This 

model is, however, unable to capture the voltage sensitivity for 

both of the aforementioned aggregated load types (both positive 

and negative correlation between the complex voltage and 

current variables). 

Next, we propose a circuit theoretic load model that is able 

to capture both load type sensitivities with respect to voltage. 

The complex governing equation of the generalized load 

current is given by: 

𝐼𝑅 + 𝑗𝐼𝐼 = 𝛼𝑅 + 𝑗𝛼𝐼 + (𝑉𝑅 + 𝑗𝑉𝐼)(𝐺 + 𝑗𝐵) (6) 

where the complex admittance ( 𝐺 + 𝑗𝐵 ) with positive 

𝐺 captures the constant impedance load behavior and is directly 

proportional to the voltage across the load, and the combined 

impedances capture the voltage sensitivities. Specifically, a 

negative conductance in conjunction with complex current 
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(𝛼𝑅 + 𝑗𝛼𝐼 ) will mimic the inverse current/voltage sensitivity 

relationship and positive conductance will represent the other. 

Both the positive and negative impedances capture the change 

in load with voltage with respect to the portion of the load that 

is modeled by the current source. 

The complex equivalent circuit and the split-circuit of the 

proposed susceptance (B), current source (I), and conductance 

(G) load model, BIG, defined by equations (7) - (8), is shown 

in Fig. 2:   

𝐼𝑅 = 𝛼𝑅 + 𝑉𝑅𝐺 − 𝑉𝐼𝐵 (7) 
𝐼𝐼 = 𝛼𝐼 + 𝑉𝐼𝐺 + 𝑉𝑅𝐵 (8) 

It is worth noting that the BIG model is equivalent to the 

ZIP load model with the real power coefficient set to zero and 

a different “fixed complex current” term. Most importantly, the 

BIG load model is linear in a current/voltage formulation, while 

the ZIP model is nonlinear in both current/voltage and 

traditional PQV formulations. In addition, the BIG model is 

capable of capturing angle information and compatible with 

constant voltage magnitude devices, whereas the ZIP and PQ 

models are not [2]. 

 
Fig. 2: BIG Load Model. 

III. MACHINE LEARNING FOR LOAD MODEL FITTING 

Our objective is to take time series measurement data for 
actual aggregated loads and fit BIG, ZIP and PQ models to 
represent them. This requires determination of breakpoints in 
the data due to changes in demand and fitting of the model 
parameters in some best-fit sort of way. For our approach, we 
apply machine learning techniques to estimate the parameters 
of the BIG aggregated load model in Fig. 2. One of the most 
popular machine learning tools used for time series analysis is 
autoregressive integrated moving average (ARIMA) model 
[12]. ARIMA predicts the forthcoming values using linear 
combination of the past values and noise. ARIMA models are 
used for time series forecasting as well as time series 
segmentation where the cut points in a time series is determined 
by the change in ARIMA models. 

Prediction of power consumption using a variant of the 
ARIMA model has been proposed in [13], where the authors 
use the ARIMA model optimized with Akaike Information 
Criterion (AIC) to predict the power consumption. Although 
machine learning techniques have proven their effectiveness for 
these problems, these approaches to date have not considered 
for fitting to a circuit theoretic load model form. 

We developed an algorithm and implementation, PowerFit, 

to provide a fast segmentation and summarization algorithm for 

current and voltage time sequences. We apply a philosophy of 

"Occam's razor" for our model fitting, that the simplest 

explanation/model for our dataset is the best, and develop a 

machine learning approach to characterize the BIG model and 

determine how many cut points are required to represent the 

load time-sequences with sufficiently small error. Table 1 

summarizes our notation: 

TABLE 1: SYMBOLS 

Symbols Definition 

𝑇 Number of time-ticks for a time series  

𝑛𝑠 Number of segments 

𝑥 A time series of length 𝑇 

𝑥 Model approximation of 𝑥 

𝒮 A set of segments of 𝑥 

�̂� A set of model approximations of segments 

𝒞 Model parameters 

𝑘 Number of parameters of the models 

The PowerFit pseudocode is shown in Algorithm 1, and can 

be further broken down into two parts: 1) cut point search, and 

2) optimization.  

A. Cut point search (bottom-up approach) 

We first describe our approach for finding the parameters of 

the BIG model. Similar steps can be applied for ZIP, PQ and 

other load model forms. Starting with the BIG load model 

template, we approximate the conductance (𝐺), susceptance (𝐵) 

and current (𝛼𝑅 and 𝛼𝐼) parameters as piece-wise constant for a 

given time segment. The proposed PowerFit algorithm then 

tries to find the cut-points where the measured load behavior 

drastically changes, and hence assign a new set of load 

parameters that is required to accurately capture the new load 

behavior.  

Finding the optimal cut points for a given modeling 

template is an 𝒪(𝑇𝑛𝑠−1)  problem, which is computationally 

expensive or even intractable for large 𝑇. Hence, we propose a 

greedy heuristic that finds cut points in the time series, which 

aims to minimize reconstruction error, while keeping the model 

succinct (with as few segments as possible). For a given time 

series of length  𝑇 , we start with the equi-spaced, finest 

resolution of a segment, and keep merging adjacent segments 

in a greedy manner until the model fit cannot be longer 

improved based on the Bayesian Information Criterion (BIC) 

measure in (10). 

Since the model parameters are assumed to be piece-wise 

constant within each segment, the LinFit function is used to fit 

the parameters 𝑐 = (𝐺, 𝐵, 𝑅, and 𝐼) using linear regression: 

𝐼𝑅  ~ 𝐺𝑉𝑅 − 𝐵𝑉𝐼  + 𝑅 

𝐼𝐼  ~ 𝐵𝑉𝑅 + 𝐺𝑉𝐼 + 𝐼  
(9) 

 At each iteration, we consider merging each pair of 

adjacent segments. The proposed PowerFit algorithm starts by 

computing the change in the BIC measure if each pair of 

adjacent segments is merged. It then merges the two segments 

which result in the largest improvement of the BIC measure. 

The algorithm continues merging segments in this way, until 

the BIC measure cannot be reduced by any further merging. The 

final number of segments is denoted as 𝑛𝑠. 

B. Parameter estimation 

Determining the number of segments is a challenging 

optimization problem and represents a tradeoff between 

complexity and accuracy. For instance, if a new model is 

assigned for each time-tick, we may have zero modeling error, 

however, the model complexity will be at maximum. In 

contrast, if a single model is determined for the whole time 

series of measured data, we may have minimum model 

complexity, but the maximum model error. To tackle this 

problem, we use Bayesian Information Criterion (BIC) [9] as 



 4 

an optimization measure for selecting a model with a good 

trade-off between the model error and model complexity; i.e. 

the count of parameters we need for our BIG model and cut-

points. Assuming the modeling errors are Gaussian, 

independent and identically distributed (i.i.d.), penalizing the 

negative log likelihood and the number of parameters in the 

model, the BIC measure is calculated as: 

𝐵𝐼𝐶(�̂�𝑖, 𝑠𝑖 , 𝑘, 𝑇) = ∑(�̂�𝑖𝑡 − 𝑠𝑖𝑡)2 + 𝑘 ln (𝑇)

|𝑠𝑖|

𝑡=1

 (10) 

where 𝑠𝑖  refers to the values of both 𝐼𝑅  and 𝐼𝐼  in the 𝑖 th 

segment, �̂�𝑖  is the model approximation of  𝑠𝑖 , 𝑇  is the total 

number of time-ticks and 𝑘 is the number of model parameters. 

In our case 𝑘 = 4 × 𝑛𝑠, since we have four parameters (𝐺, 𝐵, 

𝑅, 𝐼) for each of 𝑛𝑠 models (or segments). 

 

Algorithm 1 PowerFit: Fast segmentation and summarization 

algorithm for current and voltage time sequences. 

IV. RESULTS AND COMPARISON 

We applied the PowerFit algorithm to BIG, PQ and ZIP load 

models. The efficacy of the model is determined by the fit of 

the load behavior with a small approximation error. For all three 

model types, the PowerFit algorithm automatically determines 

the minimum number of segments needed to represent the load 

behavior over the time range of interest with sufficiently small 

error. The results show that the algorithm is able to identify the 

cut points corresponding to the daily activities and patterns that 

would be expected during a typical day, or week, etc.  

A. PowerFit validation with BIG model 

1) Description of dataset 

We applied the proposed PowerFit algorithm to actual 

current and voltage measurements from the Carnegie Mellon 

University (CMU) campus and from micro-phasor 

measurement units (μPMUs) from the Lawrence Berkeley 

National Laboratory (LBNL) Open μPMU project [8]. 

The CMU dataset consists of the current and voltage data, 

measured from August 23, 2016 11:10 am to August 25, 2016 

11:00 am in intervals of 5 minutes, which represents 575 time-

samples. The available data for the campus meters included the 

real voltage (𝑉𝑅), real current (𝐼𝑅), and imaginary current (𝐼𝐼), 
as shown in Fig. 1. Imaginary voltage was not available through 

these meters and, therefore, it is set to zero for our model fitting. 

This causes our resulting model to be less accurate than it could 

be if voltage angle information was available.  

The LBNL data consists of both the current and voltage data 

for the period of approximately 3 months of which 12 days, 

from September 30 to October 11 2015, were used for this 

analysis and is shown in Fig. 3. The available data from the 

μPMUs included the real voltage ( 𝑉𝑅) , real current ( 𝐼𝑅) , 

imaginary voltage (𝑉𝐼), and imaginary current (𝐼𝐼), at 120Hz. 

We preprocess the data to reduce noise by smoothing it via 

moving average, and perform further averaging to reduce the 

data to a total of 500 time ticks. 

 
Fig. 3: LBNL Dataset – real and imaginary current and voltage over the 

period of 12 days. 

2) Segmentation on CMU dataset 

PowerFit was applied to the dataset in Fig. 1 to determine 

the cut points for the time sequences (𝐼𝑅  and  𝐼𝐼 ). For each 

detected segment, PowerFit assigns a distinct set of parameters 

to the load model, as shown in Table 2. The comparison 

between the measured and approximated real and imaginary 

currents ( IR and II) is shown in Fig. 4. The black solid lines are 

the measured time sequences and the red dotted lines are the 

approximated load currents. The approximated currents are 

represented by eight distinct set of load parameters for the time-

period of 48 hours. The cut points corresponding to a BIG 

model segment change are identified by the blue vertical lines 

in the Fig. 4. Note the close agreement between the real data 

and the model, and how PowerFit accurately identifies the load 

changes on campus, such as at 8:15AM, when people start 

coming on campus, and at approximately 5pm, when they leave 

campus, etc. 

The approximation errors for 𝐼𝑅 , and 𝐼𝐼  are 1.91% and 

1.36%, respectively based on the formula:  

𝐸𝑟𝑟𝑜𝑟 =
√∑ (𝑥𝑖 − �̂�𝑖)

2𝑇
𝑖=1

√∑ (𝑥𝑖)
2𝑇

𝑖=1

 

 

(11) 

PowerFit trades off fitting error versus number of segments. 

For the results shown, the errors for both 𝐼𝑅 , 𝐼𝐼  were bounded by 

2.0 %, and modeling the CMU campus required only 4 model 

segments per day (Table 2) to capture the large power demand 

changes. 

Input: A time series 𝑥 of length 𝑇; 

Output: A set of model approximations for 𝑛𝑠 segments �̂� and 

the model parameters 𝒞 for each segment; 

Initialize the segments: 

𝒮 = {𝑠𝑖: 𝑠𝑖 = 𝑥(𝑖−1)×2+1:(𝑖−1)×2+2, ∀𝑖 = 1, ⋯ ,
𝑇

2
};  

𝒞 = {} (a set of model parameters); 

�̂� = {} (a set of model approximations for segments); 

Cut point search (bottom-up); 

for 𝑠𝑖 ∈ 𝒮   do 

Fit a model to each segment; 
[�̂�1, 𝑐1] = LinFit(𝑠𝑖); 
[�̂�2, 𝑐2] = LinFit(𝑠𝑖+1); 
[�̂�3, 𝑐3] = LinFit([𝑠𝑖  𝑠𝑖+1]); 

Compute the change in BIC if 𝒔𝒊 and  𝒔𝒊+𝟏 are 

merged; 

 𝛿𝑖 = 𝐵𝐼𝐶(�̂�3, [𝑠𝑖  𝑠𝑖+1], 𝑘, 𝑇) − 𝐵𝐼𝐶(�̂�1, 𝑠𝑖 , 𝑘, 𝑇)   

     −𝐵𝐼𝐶(�̂�2, 𝑠𝑖+1, 𝑘, 𝑇) 

repeat until min
𝑘

𝛿𝑘 > 0: 

 Perform the merge that decreases BIC the most; 

Find the smallest delta value, 𝛿𝑖 = min
𝑘

𝛿𝑘 

Update 𝒮 by replacing 𝑠𝑖, 𝑠𝑖+1 with [𝑠𝑖  𝑠𝑖+1];  
[�̂�3, 𝑐3] = LinFit([𝑠𝑗 𝑠𝑗+1]); 

Add {𝑐3} to 𝒞; 

Add {�̂�3} to �̂�; 

Update 𝛿𝑖 and 𝛿𝑖−1 based on the same formula 

applied to the current 𝒮 
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Fig. 4: Succinct, accurate representation of the load currenst, by PowerFit: 

With very few parameters, our PowerFit (in red) matches measured data (in 

black); and also spots natural discontinuities (blue vertical lines).  

Table 2 has the model parameters for each segment 

of 𝐼𝑅   and 𝐼𝐼  for the 48-hour time-period. Note that, as expected, 

some of the 𝐺 coefficients of the load model are negative to 

represent how the current changes with voltage magnitude in 

the normal operating range. Even with a negative 𝐺  value, 

however, the load still consumes power since the 𝐺  term 

captures only the offset of current in relation to the large current 

source in parallel with it.  
TABLE 2: MODEL PARAMETERS FOR BIG MODEL 

Seg. 1 2 3 4 5 6 7 8 

𝑮 -0.1440 0.2695 -0.2383 0.6350 -0.7207 0.7460 0.1198 -0.5656 

𝑩  0.1097 0.1673 0.0894 0.2522 0.1105 0.2679 0.2865 -0.0179 

𝜶𝑹 1108.8 -694.1 1431.5 -2187.3 3597.1 -2712.6 -4603.3 2950.3 

𝜶𝑰 -300.9 -553.3 -228.3 -904.2 -294.4 -975.2 -1045.9 260.7 

3) Segmentation of LBNL Dataset 

PowerFit was next applied to the LBNL dataset. Unlike the 

CMU dataset, the LBNL dataset included the voltage angle 

information. The results are plotted in Fig. 5 and the root mean 

square errors from (11) are 1.93% and 1.68% for 𝐼𝑅  and  𝐼𝐼 , 

respectively. 

 
Fig. 5: BIG model representation of 12 days for the LBNL data; BIG model is 

clearly shown to capture the voltage variability of the load characteristics. 

The results in Fig. 5 demonstrate excellent fit between the 

measured data and BIG model. Note how well the BIG model 

represents the voltage-change load characteristics (within a 

single segment) between days 2-3 and 10-11 as shown in the 

red circles in the Fig. 5. 

B. Fitting and comparison for ZIP and PQ load models 

The PowerFit algorithm was also used to characterize the 

CMU and LBNL load data for both PQ and ZIP load models. 

The segmentation of the CMU 48-hour-time-period data set 

with PQ model fitting is presented in Fig. 6. 

 
Fig. 6: PQ load model representation of the load currents. 

As can be seen from Fig. 6, by using the same number of 

segments as used for the BIG load model, the measure error 

increases with the PQ model. Furthermore, the PQ load 

representation does not capture the voltage sensitivities of the 

load current, which impacts the power flow simulation accuracy 

if the load voltage operates below the nominal (measured) one.  

Fig. 7 shows the segmentation of the LBNL data for the PQ 

model, where achieving a similar error measure as that of BIG 

(around 2%) requires significantly more segments (on average 

around 7 per day). This is partly due to the inability of the PQ 

load to accurately represent the voltage dependency of the load 

behavior resulting in higher number of segments. The ZIP 

model provided a fitting quite similar to that of the BIG model, 

requiring slightly fewer segments per day on average to achieve 

the same error. 

 
Fig. 7: Fit of PQ load models with PowerFit algorithm requires significant 

number of additional segments and results in higher error as compared with 

BIG model. 

The error measure of all the three load models as a function 

of the average number of segments per day for both the LBNL 

and CMU data sets is displayed in Fig. 8, and Fig. 9 

respectively. As expected, the linear BIG models perform far 
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better than the PQ load model, while performing similar to the 

more complex ZIP load model. Importantly, in contrast to ZIP 

models, the BIG model results in linear constraints for our 

current-voltage power flow formulation, is compatible with 

FACTS devices that can correspond to fixed voltage magnitude 

buses, and can be used to capture voltage angle information. 

 
Fig. 8: Error measures for different load models using PowerFit algorithm 

for LBNL data set. 

 
Fig. 9: Error measures for different load models using PowerFit algorithm 

for CMU data set. 

Lastly, since the error measure is expected to be inversely 

related to the number of parameters used by the model, Fig. 10 

shows a tradeoff curve, plotting error against number of 

parameters used by the model for both CMU (right) and LBNL 

(left) data sets. As we observe, the BIG model has better error 

tradeoff than the PQ and ZIP models over most of the range. 

 

 
Fig. 10: Error vs. number of parameters tradeoff curve using PowerFit 

algorithm. The BIG model provides the best tradeoff for most of the range. 

V. CONCLUSIONS 

This paper proposes a new linear load model for the power 

flow and three-phase power flow problem based on circuit-

theoretic representation. The load model can accurately capture 

the aggregated load in the grid in terms of a linear relationship 

with complex voltages and currents that when used in 

conjunction with our equivalent circuit formulation results in 

linear equalities for the load buses that can significantly reduce 

the complexity of power flow and three phase power flow 

problems. Furthermore, the proposed load model is more 

generic than the existing load models as it captures the complex 

voltage dependency (voltage magnitude and voltage angle) of 

the load. The machine learning techniques proposed in this 

paper can estimate the load parameters accurately by inherently 

recognizing natural cut-points (start-end of working day).  
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