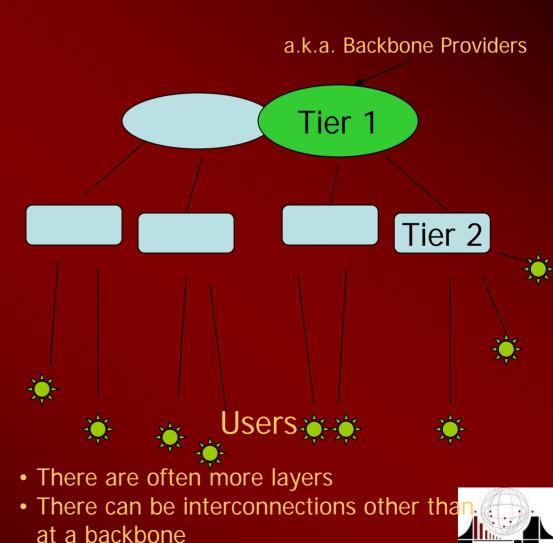

Technology Infrastructure and Case Analysis

Rahul Tongia

Requirements for Success of a Service

Adapted from: Leon-Garcia


Novel ICT (?)

- Device cost: 10-100 times reduction
- Infrastructure cost: 10-100 times reduction
- Device power: 10-100 times lower
- Speech recognition for obscure languages and dialects

What is the Internet?

- The global (public) network built from hundreds and thousands of internetworking independent networks.
- No single entity "runs" the Internet
- Operates on standards
- Built on a modified hierarchical structure
- Packet Switching

The Internet Needs 3 Things to Run PROTOCOLS – Standards for data-centric design

- Expectations of how things should work together
 - Layering
- Robustness Principle
 - "Be liberal in what you accept, and conservative in what you send." Jon Postel
- Resiliency distributed architecture
- Limits Monopolies
- o NO ONE OWNS THE INTERNET
- PEOPLE Trust
 - o Addressing schemes and registration
 - o End-to-end design
- PAYMENTS Boundaries
 - o Limits of Responsibilities
 - o Inside the core, is like a black box ("The Cloud")

"Call Completion" / Transaction (aka Settlement) Charges

- Mail postage stamp mechanism
- Telephony cost sharing mechanisms (vary)
- Internet?
- What are the costs?
 - o Calling sharp falls over time
 - o Mailing increasing over time
 - o Faxing not going away anytime soon
 - o Email
 - Is it really free?
 - Access
 - Upstream TCO (ignoring SPAM, for now!)
 - Time

Peering – Internet "Call Completion"

- Where backbones come together
 - o Major design issue (relates to cross-connection)
- Public Peering fallout of the public history of the Internet
 - o Network Access Points (NAPs)
 - Started with 4, but now there are more
 - Usually done by equals
 - Give as much traffic as receive
- Private Peering
 - o Commercial (private)
- International peering is more limited (links are much more expensive)

TCP/IP

- Suite of protocols for networking
- Based on logical address for devices
- Most popular standard worldwide built into most OS
- Like most other packet switching, is
 - o Connectionless
 - o Statistical (non-deterministic)
 - No inherent Quality of Service (QoS)
 - o Most of IP routing is unicast
- Routers pass packets along towards the destination hop-by-hop

Internet – Good for what it was made for

- Best-effort data network
 - o Scalable
 - o Resilient
- New trend Everything over IP (XoIP)
 - o Voice Circuit switched
 - Much less than half the traffic (on average)
 - Growth of ~25% vs ~100% (?) for data
 - But, is most of the revenue for carriers
 - Suppliers' "killer app"
 - For users, *email* and WWW are the killer apps (legal, anyways)
 - Internet Telephony is not the same as VoIP
- Innovation can occur at the edge, in small pieces

 End-user applications and revolutions

ICT not just Computers and Internet...

- Sensors on chip => very cheap if integrated
 - o Basic: temp, humidity, pressure, moisture, light...
 - o Moderate: acceleration, magnetic, position
 - o Simple chemical: gases, smoke
 - o Complex biological: toxic agents
- Actuators: control environment as well
 - o Harder and costlier, often require more human interface
- Examples
 - o MEMS for low-cost "lab on a chip" and drug delivery
 - o Sensors
 - Environmental or food quality (or security)
 - o Remote sensing for predicting and enhancing crop yields
 - o Leveraging "cyber-infrastructure" for science and policy
 - Healthcare, e.g., Epidemiology and Patient Management

Hypothetical WiFi Kiosk

- Consumer Access Points are now < \$50 (only!)</p>
 - o What else does it take?
 - o What range does it cover?
 - Number of Users
 - Band overlaps and congestion
 - FCC vs. ETSI regulations on power emissions
 - o Uplinking
 - IP address space
 - o "Now What" Syndrome need user h/w, s/w, etc.
 - o Business Plan?
 - Capex is less than half of "broadband" costs

Leapfrogging

- Countries need not just be followers
- Role for new / advanced technologies
 - o Can involve R&D
 - Speech
 - Power systems
 - Wireless
- Role of (need for) new business models
 o Open Access

High Tech to "Low Tech"...

TechBridgeWorld

Agriculture in Perspective

o US today

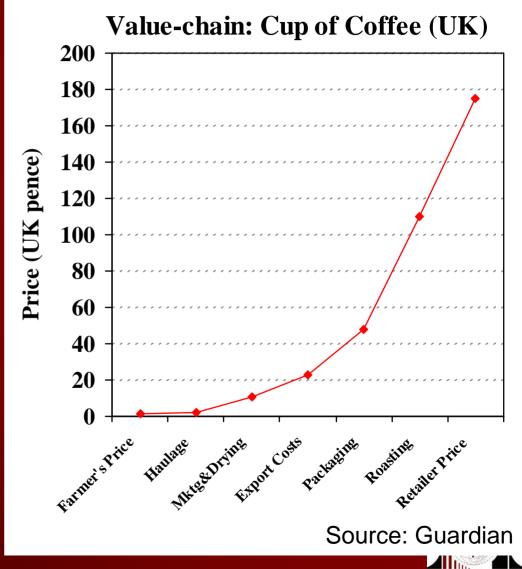
- $\sim 1+\%$ of population
- − ~2+% of GDP
- o India
 - 65-70% of the population
 - ~20% of GDP
- Rhetorical Q: What paths or trajectories are sustainable?

Roles of Advanced Technologies

Increasing output (yield)

- o Productivity
- o Sustainability
- o Optimizing inputs
- Improving the supply chain from the farmer's perspective
 - o Price discovery
- Land ownership and empowerment
- Education

Feeding the World


Feeding the World

- o Population has grown tremendously, and expected to peak ~10+ billion (growth ~50% more)
- o Arable land peaked roughly 1980 (~10% of total land)
- o Thus, need more output from the land
- Poverty and Hunger are linked in the developing world
 - o Malnutrition (undernutrition) is a key determinant of health, economic productivity, etc.

Making a Living

- How many people are needed to grow enough food?
 - o Is it a local, regional, or global market?
 - o Globally
 - 4% of economy
 - Over 1/3 the jobs (?)
- How do we obtain fair prices for farmers?

TechBridgeWorld

Sustainability and Agriculture

- Soil cannot produce more than the inputs it takes in
 - Else it will degrade and require ever greater inputs up to the point of unusability
 - o In addition to how much gets taken out, when, where, how fast, and in what form it gets taken out affect soil productivity and capabilities
- Sustainability is a fundamental part of long-term agriculture, which is based on:
 - o Preserving the natural resource base
 - o Maintaining the soil's productivity
 - o Maintaining environmental quality
 - Alleviating human drudgery and suffering making agriculture a viable and respected livelihood.

Green Revolution

- Achieved by growth of input-responsive varieties of grains on fertile soils significantly enhanced by fertilizers and irrigation
 - o Differences in these inputs explains variances in productivity (in part):

Source: FAOSTAT data (2004)	World Cereal Yield (tons/ha)
World average yield	3.31
Highest yield (Belgium)	8.48
Lowest yield (Botswana)	0.24

Water for Irrigation

- One of the major inputs for agriculture
- Either costs a lot, or is subsidized
 - o Estimated 1+% of Indian GDP as subsidy
- Not all solutions need to be high-tech
 - o E.g., "MoneyMaker" foot powered pump (right)
- Too much water is not a good solution
 - o Nutrient runoff, soil runoff, salinity, etc.

Source: ApproTEC (now Kickstart)

Rice

Productivity (UNCTAD, 2003)

- o World average ~3.9 tons/ha
- o National maximum productivity: nearly 9.5 tons/ha in intensive irrigated systems (Australia)
- National minimum productivity: ~0.75 tons/ha in traditional upland rice systems (Congo Republic)
- Different systems (rainfed lowland, upland, or irrigated) require different levels of inputs and have different yields

Technology for Rice Farming

- Traditional rice farming
 - o Labor intensive (~300 hrs/acre)
- Mechanized rice farming (e.g., California)
 - o ~4 hrs/acre
- Laser soil leveling
 - o Since late 1970s in California
 - o 0 to 0.5% grade (within 2" ideally)
 - (Varies if rice only vs. crop rotation; latter requires small grade)
 - o Impacts water requirements, productivity, growth of weeds, etc.
 - o Can be linked to contoured grading

Input Calculations for Rice

- Rice seed
- Sunlight Free
- Fertilizer depends on soil conditions
 - o Not in widespread use in developing countries
- Pesticides
 - o Limited use
- Water Extensive requirements
 - o Most systems rely on submerging the germinated crop (often transplanted after germination elsewhere)
 - o Rule of Thumb: One ton of rice requires 2,000 tons of water (!)

Water for Rice (calculations)

Assume

- o 2 tons/hectare yield [1-3 is a safe range]
- o 4000 tons water required (relatively efficient for developing countries)
 - Correlated with yield
- Energy requirements
 - o How deep is the water? [100m is not uncommon]
 - o Is it all from irrigation? [Varies by region]
 - o What is the efficiency of pumping? [20% is the norm, instead of the 30-45% possible]

Rice Input Calculations (cont.)

Physics:

- o Energy = m^*g^*h
- o At 20% efficiency, each hectare requires over 5,500 kWh of electricity per hectare (assumptions from prev. page)

- This is not the average, but applicable for some areas

- o That same electricity might cost \$350+ if all is from this underground irrigation (full cost accounting, excluding subsidies)
- o Value of this produce?
 - 2 tons rice in India had (2005) a Minimum Support Price of \$260 (@~130\$/ton)
 - Implications?
 - Subsidies required
 - Don't grow rice on such a location(!)

Other Modern Technologies

Proven

- o Soil maps
- o Remote sensing (satellite images)
- o Geographic Information Systems (GIS)
- Under development
 - o Expert systems improving decision making
 - o Precision Farming (extending drip irrigation)
 - Sensor Networks
 - Fertigation
 - o Biotechnology (GMOs)

Impacts of Technology -Productivity

Farming System / Input Level	Ha/person required to feed
Shifting cultivation	2.65
Low traditional	1.20
Moderate traditional	0.60
Improved traditional	0.17
Moderate technological	0.11
High technological	0.08
Special technological	0.05

Other Issues

- Equity
 - o Efficient need not equitable
 - o Can we incentive (rather than force) people to *not* farm?
- Distribution
 - Reduction of starvation is less about growing more food than making it available
 - o Spoilage of food (esp. during storage/transport) is a major issue
- Subsidies and Incentives
 - o Changes in cropping
 - o Changes in demand (diet)
 - Indirect consumption increases, e.g., Corn in the US
 - o Distort global productions and competitiveness
 - Numerous examples
 - Why grow sugarcane in Florida?
 - Rice in US/Australia est. 0.02% GDP using 7% of the water
 - » Inequities in water use get worse when we consider meat vs. grains
 - Overseas Development Assistance << agro-subsidies

Other Issues (cont.)

- Lack of social/economic support systems
 - o Social Security
 - o Insurance
- Financing issues
 - End-users lack capital for even very small investments
- Innovation
 - o Consultative Group on International Agricultural Research (CGIAR)
 - Established in the 1970s
 - Unique in terms of Technology and Development collaborative effort
 - o Genetically Modified Organisms (GMOs) and advanced biotechnology?

Supply-chain and optimization

Price discovery

- o Use of SMS for sharing information (or even calls)
 - Fishermen in Kerala (India)
 - Kenya Agricultural Commodity Exchange (KACE)
 - E-Choupal
 - *Is SMS (texting) technology an open platform?*

Weather information – short and long-term

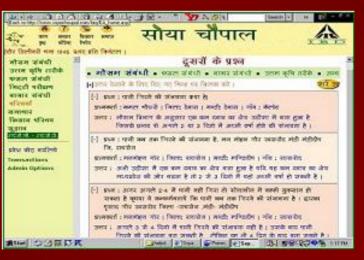
Organic, "Green" and Alternative Farming

- Consumers may be willing to pay a premium
 o E.g., Fair Trade Coffee
- Issues of labeling, monitoring, access to markets, etc.

E-Choupal (Discussion)

- What is it?
- Technology Details
- Design
- Why it works?
- Can it be replicated?

Power



Connectivity

e-Choupal System

Training

Content

	Transac The	etion Manc Rs pe	di Ch	
Farmer Incurs	Trolley Freight to Mandi Filling & Weighing Labou Labour Khadi Karai Handling Loss		270	
	Commission to Agent Cost of Gunny Bags (net) Labour (Stitching, Loading Labour at Factory (Unload Freight to Factory Transit Losses	= 75 g)= 35	505	
Source: ITC 4 Total (75	TechBridgeWorld

	Transaction Co The eChoupal Co Rs pe	Chain
Farmer Incurs	Trolley Freight to Mandi= 100Filling & Weighing Labour =70Labour Khadi Karai= 50Handling Loss= 50	270
Processor Incurs	Sanchalak50Commission to Agent $= 100$ Cost of Gunny Bags (net) $= 75$ Labour (Stitching, Loading)=35Labour at Factory (Unload) $= 35$ Freight to Factory $100 = 250$	50 5 185
Source: ITC Total	+Transit Losses= 10*Chain775 1	85

The e-Choupal System

- 1. ICT Infrastructure:
 - a. Computer
 - b. Internet
 - c. Multimedia
 - d. Broadband
 - e. Smart Card
 - f. VSAT
 - g. Solar Power
- 2. Physical Reach:
 - a. Choupals within walking distance
 - b. Multipurpose Warehouse hubs within driving distance
- 3. Key Intermediaries:
 - a. Sanchalak (1 per cluster of 5-6 villages) 1500/state
 - b. Sanyojak (1 per group of 10-15 choupals) 100/state
 - c. ITC (support the farm produce marketing end)

e-Choupal

37

- Technologies were largely off the shelf
- Information was free to farmer
 - o ITC and Sanchalak only make money if he/she chooses to transact
- Trust was a key ingredient to the success of e-Choupal
- Information is only one ingredient ITC provided the supply chain to actually fulfill the transaction (warehouses nearby)
- Extending the infrastructure for other uses

