Logical Frameworks

Why not just classical logic?

Iliano Cervesato

I was recently invited to give a presentation about the logical frame-
work LLF. After a 40 minutes talk in which I revealed the intricacies
of the underlying type theory and illustrated by means of examples
the meta-representation wonders of this new language, somebody in
the audience said: “This looks very complicated. Why not using, say,
classical logic instead?”. In this chapter, I build upon my then im-
provised answer. I will recall what logical frameworks are and try to
motivate the simple but unfamiliar constructs they often rely upon.

1 Introduction

It is often taught in introductory classes in Philosophy, Mathe-
matics, and Computer Science that logic is the universal language
of reasoning and rigorous representation of knowledge. This is
not unfounded: for example, the entire body of mathematics can
be formalized in classical first-order predicate logic.

This however causes people with only a basic logical back-
ground to frown when they hear logical framework experts, those
scholars who specialize in formal reasoning and knowledge rep-
resentation, use scary-sounding words such as “higher-order ab-
stract syntax”, “dependent type theories”, and “linearity”. If
classical logic is so universal, why do these authors rebuff it for
those apparently cryptic and hopelessly complicated languages?

In this chapter, we show that many ideas in modern logi-
cal frameworks emerge as refinements of computationally or rep-
resentationally suboptimal aspects of classical logic. Our pro-
gression does not reflect the historical development of these sys-
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tems, and is geared towards logical frameworks in the LF fam-
ily [Harper 1993, Pfenning 1991].

2 Deductive Systems

Exchanging information and reasoning about a formalism, may
it be a novel programming language or an arcane algebraic struc-
ture, presupposes that we have a language to express the concepts
we are interested in. These include basic linguistic facts such as
“3 + 5 is a well-formed expression” (syntaz), descriptions of the
effect of operations, for example “3 + 5 evaluates to 8” (seman-
tics), and properties of the formalism such as “+ is commuta-
tive” (meta-theory). In these three examples, we used English to
express the concepts involved. Being fully rigorous when using
natural languages is difficult to achieve and impossible to enforce.
Jargon and abbreviations (e.g. writing “3+5 — 8” for “3+5
evaluates to 8”) only alleviate the problem.

Deductive systems [Martin-Lof 1985] approach rigor by fixing
precise conventions on how to express the concepts of the formal-
ism we are interested in (the object language). In those presenta-
tions, the predications we make about object entities are called
judgments. The quoted examples above are all judgments.

In their simplest instance, judgments are syntactic descrip-
tions of relations among lexical elements of the object language.
They can either hold (e.g. “3+5 < 8”) or fail to hold (e.g.
“34+5 < 97). Expressing the meaning of the constructs of the
object language amounts then to specifying which of the relevant
judgments hold, and which do not. An explicit and exhaustive
enumeration of the former (and of the latter) is generally ineffec-
tive since infinitely many judgments may be involved (_+_ — _
is an example). However, the constructs commonly found in
all formalisms of interest display forms of regularity that make
them amenable to a finite description. Schematic rules of infer-
ence achieve this effect by expressing the validity of classes of
judgments sharing a common syntactic pattern (rule conclusion)
in terms of the validity of zero or more other judgments (rule
premises). Instances of inference rules are chained to provide ev-
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idence of the validity of specific judgments in the form of finite
derivations. A judgment is then derivable if it has a derivation.
A deductive system faithfully expresses an object formalism if
all and only the judgments that hold are derivable. We will now
illustrate these definitions on our running example.

Notations for grammars such as the Backus-Naur Form yield
deductive systems for the syntax of a formalism. If, for the sake
of succinctness, we express natural numbers in unary notation,
we can specify the syntax of our example as follows:

num =z | s num
exrp = num + num

where we have chosen the symbols z, s, and + to denote zero, suc-
cessor, and addition, respectively. The implicit judgments here
are “the string _ is a number” and similarly for expressions. The
inference rules are the grammatical productions: for example,
the first line states that “z is a number” (rule with no premises),
and that “s N is a number” if “N is a number” (rule schematic
in N with one premise). The derivations are all the parse trees.

Here, “s” can be viewed either as a character (or token) so
that “ssz” is a list of characters (tokens), or as a function sym-
bol with one arguments so that “ssz” stands for the expression
“s(s(z))”. The former approach is called concrete syntaz, the
latter abstract syntar. Expressions in the abstract syntax are
isomorphic to parse-trees.

Given this representation of numbers, a simple recursive def-
inition specifies how to evaluate their sum: “adding zero to any
number N yields N”, and “for any numbers M, N, and V,
s M + N evaluates to sV if M + N evaluates to V. Transliter-
ating each part into symbols yields the following two rules:

N num N, M,V num M+ N <V

eval_z eval_s

z+N < N SM+ N — sV

The horizontal line separates the premises and the conclusion of
each rule, and the text on the right identifies the rule. The first
rule has one premise and is schematic in NV, the second has four
(abbreviated) premises and is schematic in M, N, and V. It
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is easy to observe that the syntactic judgments in rule eval_s
are redundant, but omitting the premise of rule eval z would
allow successfully evaluating garbled expressions (e.g. z+oops —
oops). Observe that if we think of each rule as describing an
atomic step of the evaluation of the sum of two numbers, then
derivations are a notation for evaluation traces.

Meta-theoretic properties are predications over semantic de-
rivations. For example, “+ is commutative” can be restated as
“given numbers M, N, and V, for every derivation D of M+ N —
V, there exists a derivation D' of N + M < V”. Therefore, a
convenient notation for derivations is an essential prerequisite
for reasoning about a formalism. For space reasons, we refrain
from further discussing meta-theoretic judgments (properties)
and their derivations (proofs). The techniques we will illustrate
are however applicable also in that setting (see [Michaylov 1991]).

3 Logical Frameworks

Through the notions of judgment and derivation, deductive sys-
tems allow precise descriptions of formalisms in Mathematics,
Logic, and Computer Science. However, when exchanging ideas
with others or proving properties, we seldom adhere to their full
formality: their rigid patterns soon get in the way of effective
communication. A variously balanced mixture of natural lan-
guage, judgments, and derivation sketches is normally adopted
as a good compromise between rigor and bearability.

Formalizing even simple proofs often requires a fair amount of
work with little benefit: indeed, the formal argument is seldom
more convincing than the original proof since we, as humans,
have a limited ability of keeping alert when confronted with long
and convoluted chains of inference. Paradoxically, formal errors
are more likely to pass unnoticed than informal ones.

Since computers are free from the attention shortcomings of
the human brain, they are ideal candidates for the clerical work
of checking proofs and derivations, and, in simple cases, of val-
idating judgments. Parsers, interpreters, compilers, and various
related tools efficiently mechanizes aspects of the syntax, seman-
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tics, and meta-theory of specific languages. The research on log-
ical frameworks explores instead ways of automating common is-
sues found in generic deductive systems. Not surprisingly, major
developments were made in the area of general purpose theorem
proving.

Logical frameworks are formalisms specifically tailored for
representing and reasoning about generic deductive systems in
an automated environment. Their chief constituent is a meta-
language, a deductive systems itself, that serves the purpose of
encoding the judgments and derivations of the object languages.
They also come with a body of techniques, known as their rep-
resentation methodology, that dictates how to best express the
different aspects of an object deductive system.

Not every formalism capable of representing generic formal
knowledge is suitable as the basis for a logical framework. A
good meta-language must satisfy two additional requirements:
ezecutability, i.e. it should have good computational properties
(this excludes for example general set theory or specification lan-
guages such as Z), and immediacy, i.e. it should provide simple
and transparent support for representing the basic constitutents
of a deductive system, judgments and derivations (this excludes
not only approaches based on Goédel numbering and Turing ma-
chines, but also many common programming languages such as
C or Java). We will now make these requisites more precise.

The minimal computational requirement of a meta-language
is that checking whether an expression is the representation of
a well-formed derivation for a given judgment should be de-
cidable. Since proofs are meta-theoretic derivations, this also
means that the system should be able to decide whether an (en-
coded) proof is actually correct. This is the extent of what AU-
TOMATH [deBrujn 1980], one of the first logical frameworks,
was able to do. More recent systems also mechanize aspects
of the discovery of a derivation for a given judgment, an activ-
ity that includes proof-search. These frameworks fall roughly
into two categories: some are designed as interactive theorem
provers (e.g. NuPrl [Constable 1986], Cog [Dowek 1993], and Is-
abelle [Paulson 1993]), while others are implemented as logic pro-
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gramming languages (e.g. AProlog [Miller] and Twelf [Twelf]).

Opting for a representation that closely resembles the object
system it encodes has several advantages. First and most impor-
tantly, it makes it easy to check that the representation faithfully
models the different constructs of the object language and their
behavior. Many authors actually provide adequacy theorems and
their proofs as evidence of the correctness of their representation.
Second, it yields simple, short, elegant, and fast formalizations of
the object language (a deductive system that takes mere hours
to encode in one meta-language can require months in another).
Third, when doing proof-search, a more complex encoding gen-
erally entails a larger search space, and therefore exponentially
more time can be needed in order to find a solution.

A deductive system can be given an immediate representation
in a logical framework if the meta-language provides primitive op-
erations for all the forms of judgment and derivation it mentions
(observe that there exist more complex judgments than the ones
we saw in Section 2). In this way, the encoding can focus on
the object language rather than on the infrastructure that ex-
presses it. As of now, there is no meta-language that embeds
satisfactorily all the patterns that can appear in a deductive sys-
tem. Instead, current logical frameworks provide internal sup-
port for different features, which makes them adequate for differ-
ent classes of object formalisms. In the sequel, we will examine
some of the most recurrent features and present a succession of
meta-languages that incorporate them. Classical logic (actually
a sublanguage of it) will be our starting point.

4 Horn Clauses

First-order classical logic has been used for decades to represent
and reason about formal systems in various domains. Moreover,
although proving the derivability of a formula is undecidable,
there exist fairly sofisticated theorem provers that have been suc-
cessfully employed for this task. In the light of these facts, giving
a simple and faithful representation of deductive systems like the
one in Section 2 seems trivially within the reach of this formalism.
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Let us try. Natural numbers and expressions can be repre-
sented by encoding either their concrete or abstract syntax. In
the former case, we use the binary function cons(_,_) and the
constant nil to construct lists of symbols, emulating strings. We
furthermore choose a constant for every token, here z, s, and +
for “z”7, “s”, and “4”, respectively. “ssz” is then represented as
cons(s, cons(s, cons(z, nil))).

The abstract syntax yields a more direct encoding. In this
case, we represent “z”, “s”, and “+” as the constant z, the unary
function symbol s(_), and the binary function symbol +(_, _),
respectively. Now, the expression “ssz” is entered as s (s (z)).

Notice that, differently from the previous representation, we
have no way to express garbled expressions such as “zs+”. This
is however acceptable if we are only interested in well-formed en-
tities. Observe also that this notation provides a direct access to
the subexpressions of the operators: for example, if we want to
access the second operand of “4+” in the concrete representation
of the expression “N + M”, for some M and N, we need to ex-
plicitly provide a procedure that strips the unwanted prefix; on
the other hand, it suffices to select the second argument of the
+(—, —) function symbol in the abstract representation. Consid-
ering how frequently inference rules refer to logical subterms of
their constitutents, we are almost compelled to adopt encodings
that mimick the abstract syntax. This is the first situation in
which immediacy guides our representational choices.

[43

The three judgments appearing in our example, “_ num”,
— erp”, and “_~ — _”, can be encoded as the three predi-
cate symbols num(_), exp(_), and eval(_, _), respectively. Then,
the judgment “ssz + sz < sssz” is mapped to the predicate
eval(+(s (s (2)),5(2)),s (s (s (2))))-

The inference rules appearing in our example have a very
simple form: they all express the fact that, for any instantiation
of the schematic variables, if all the premises are derivable, then
there is a derivation of the conclusion. It is then natural to encode
them by means of formulas of the form

[43

ViEl....’En.Al Ao A Am:>B,
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where B is the representation of the rule conclusion, A1,..., A,
encode its premises, and z1,...,z, are all its schematic vari-
ables. Rules with no premises are rendered as the abbreviated
Vz1...2,.B. Formulas of this form are known as Horn clauses.
There exist efficient proof-search algorithms for them, to the ex-
tent that they constitute the declarative core of the logic pro-
gramming language Prolog [Sterling 1994].

The inference figures appearing in our example are encoded
as the following Horn clauses:

num(z).

VuN.num(N) = num(s (N)).

VM, N.num(M) A num(N) = exp(+(M, N)).

VN.num(N) = eval(+(z, N), N).

VM, N,V.num(M) A num(N) A num(V) A eval(+(M,N),V)
= eval(+(s (M), N),s(V)).

A Prolog system can check whether a predicate follows logically
from these formulas. By virtue of adequacy theorems that space
limitation prevent us from stating, a judgment from our example
is derivable if and only if the corresponding predicate is a logical
consequence of the above Horn clauses.

This provides a way of verifying derivability, but we did not
mention derivations yet. We can however painlessly alter the
above representation to validate them. In order to do so, we
associate to every inference rule a unique function symbol with
as many arguments as the number of its schematic variables and
premises. In the case of rule eval_z, we will have for example
eval_z(_, _). The presence of this constant in the representation
of a derivation acts as a witness of the application of that rule. Its
arguments are intended to hold the instantiation of the schematic
variables and the representation of the derivation of each premise.
For example, a derivation of the judgment “sz + sz < ssz” is
represented as the following term:

evals(z, s(z), s(z),
num_z, numss(z,num_z), num.s (z,num_z),
eval z (s (z),
num.s (z,num_z))
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The derivation starts with rule eval_s as indicated by the use of
the symbol eval_s. Its first three arguments (first line) correspond
to the instantiations of the schematic variables M, N and V of
that rule. The next three arguments (second line) encode deriva-
tions of the syntactic premises we abbreviated as N, M,V num.
The last argument (third and fourth line) represents a derivation
of the premise M + N — V., which consists of an application of
rule eval_z.

In order to verify the validity of a derivation, we include it
as an additional argument to the representation of every judg-
ment. Then, we have the clause encoding each rule check that
the corresponding function symbol appears in the derivation. For
example, in the case of eval_z, we obtain:

VN,D.num(N, D) = eval(+(z, N), N,eval_z(N, D)).

The correctness of an evaluation derivation can now be verified
by encoding it in the extra argument of the predicate eval and
having Prolog verify whether it is a logical consequence of the
enriched clauses. Derivability can still be established by proving
formulas of the form 3D.eval(+(M,N),V, D) for given M, N,
and V. Prolog can do even better and construct such a D (as
well as the value V if left uninstantiated).

5 Sorts

An attentive observation of the clauses for eval in the previ-
ous section reveals that the lexical predicates appearing in them
serve the sole purpose of ascertaining that the instantiation of
their variables belong to the proper syntactic category. Remov-
ing them would cripple the representation by validating non-
derivable judgments. However, evaluation is intended only to
relate expressions to natural numbers. Therefore, we could get
rid of these predicates if the first argument of eval were con-
strained to be an expression, and its second argument a number.

The syntactic clauses themselves are unsatisfactory: the sec-
ond formula for example is intended to express the fact that the
function symbols s accepts a natural number as an argument
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to produce a natural number; at the same time, the ill-formed
expression s (+(z,z)) is legitimate, although non-derivable.

In both cases, the cause of our discontent is that the no-
tion of term available in classical first-order logic is too coarse to
syntactically prevent the formation of meaningless expressions.
Therefore, since the arguments of a function or predicate symbol
can be any term, we must rely on dedicated formulas to weed out
unwanted expressions.

We can solve these problems by moving to a multi-sorted ver-
sion of the language of Horn clauses. This formalism makes it
possible to declare sorts for the purpose of classifying terms. Ev-
ery constant should then be assigned a sort, we should state the
sorts of the arguments and of the result of function symbols, and
similarly we should give the sort of the arguments of predicate
symbols. The declared sorts and the resulting type of each sym-
bol are collected in a signature. The clauses change only to the
extent that we must specify the sort of every bound variable.

In the case of our example, we obtain the following formal-
ization, where the keyword type is used to declare sorts, and the
rest of the notation should be self-explanatory:

num : type.

exp : type.

Z : num.

S 1 num — num.

+ : num X num — exp.
eval : exp X num.
VN:num.eval(+(z, N),N).
VM, N,V:num.eval(+(M, N),V) = eval(+(s (M), N),s (V)).

Signature

Now, the expression s (4(z,z)) is rejected since s expects an argu-
ment of sort num, while +(z,z) has type exp. Observe that syn-
tactic judgments are not represented any more by predicates but
by types. It can be proved that every natural number is encoded
as a unique term of sort num, and that every term of this type is
the representation of some natural number. A similar statement
holds for expressions. This representation is computationally ad-
equate since type checking is decidable in this language.

The syntactic category of the variables in the two clauses
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remaining is now constrained up-front rather than by means of a
formula. Observe however that the type of these variables could
be omitted since it is determined by the context in which they
occur. This is a general property of multi-sorted first-order logic.

Evaluation derivations are represented in this setting as in the
previous section. The only difference is that we need to declare a
sort for them (deriv, say) and instrument the required constants
with the proper types.

6 Higher-Order Terms

The representation we obtained so far is admittedly elegant, but
the object language itself is not very interesting. We can make
it more useful by introducing other arithmetic operators or by
including conditionals and a supply of boolean constructs. The
techniques we examined so far apply smoothly in all these cases.

Adding constructs that bind variables, such as functions, quan
tifiers, or simply local variables, is not as painless however. In
this section, we will consider an object language consisting of
the latter, plus any of the construct we mentioned above. We
have the following grammar (notice that we are doing without
the lexical category num):

exp n=1z|sezp | ... |z |let z = ezxp in exp

here,  ranges over the new lexical category of variables. The
expression “let £ = F; in Ey” declares z as a local variable of
F5 and initializes it to the value of E7. Locality means that x is
not visible outside Fs even when the “let” expression is part of a
larger term. If two “let” constructs with the same local identifier
are nested, the inner one shadows the outer one within its scope.
Evaluating the above construct amounts to computing the
value of F1, substituting it for z in Fs, and then evaluating the
resulting expression. We have the following inference rule:

FE, — % [VI/.'L']Ez — V
letx=FE;in By — V

eval_let



12 / IL1IANO CERVESATO

where [V'/z]E5 is our informal notation for the substitution of
every free occurrence of = in Fy with V'. “let”s are a convenient
way to factor out large or recurrent subexpressions.

A first attempt at encoding the “let” construct in multi-sorted
first-order logic may add the following declarations to the encod-
ing in Section 4:

var : type.
var2exp : var — exp.
let : var x exp x exp — exp.
subst : exp X var x exp X exp.
VX:var.VE, Es, E} V, V' exp.
eval(Ey1, V') A subst(V', X, Es, E}) A eval(E;, V)
= eval(let(X, Eq, E»), V).

where var is the sort of variables, var2exp casts a variable into
an expression, and “let £ = e; in ex” is represented as the term
let(X, E1, F»), where X, Eq, and E5 are the encodings of z, eq,
and eq, respectively. The clause for eval represents rule eval let.
Notice that it relies on the auxiliary predicate subst to realize
substitution. For the sake of conciseness, we did not show the
clauses for subst.

Although this encoding represents our intuition about “let”,
it has several inconvenients. First, nothing prevents a variable
from escaping its scope: for example, assuming that x has been
declared as a variable, +(x,let(x,z,s(x))) is a legitimate term
although it is ill-formed if the variable x is not intended to appear
outside of the “let” expression. We can track this problem to
the fact that our representation schema forces us to declare all
identifiers in the global signature: we have no way to specify that
x should exist only inside the third argument of the let.

A second source of unsatisfaction derives from the necessity
of axiomatizing the definition of substitution. Had we displayed
them, the clauses for subst would have amounted to more than
half of the encoding of the entire example. Their specification is
tricky since they must go inside terms, properly handle homony-
mous variables, and in situations slightly more complicated than
ours perform variable renaming in order to avoid capture. Deriva-
tion encodings are proportionally more complicated, causing rea-
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soning correctly about them to often be overwhelming. This goes
against the ideal of immediacy that we are promoting, in par-
ticular considering how frequently binding constructs appear in
deductive systems.

These considerations lead us to look for a meta-language that
offers a primitive support for the notions of local variable, binder,
and substitution. This is achieved by replacing the (multi-sorted)
first-order term language we have been using with a simply-typed
A-calculus.

Recall that a term AX: 7. M binds the variable X (of type
7) in the sub-expression M: X is local to M and undefined else-
where. The idea is then to adopt the A-abstraction operator to
encode the binding effect of generic object-language constructs
that introduce local variables. For example, we will represent
the expression “let z = z in sz” as the term let(z, AX:exp.s (X)).
Notice that the object-level variable x is simply represented as a
variable X of the meta-language, and that X is given the correct
type exp. In order to achieve this representation, we must endow
the second argument of let with a functional type. This symbol
is indeed declared of type exp X (exp — exp) — exp.

This addresses the first issue above. Our frustration with sub-
stitution has a simple solution as well since, in the A-calculus, the
terms (AX:7. M)N and [N/X]M are considered equal for generic
expressions M and N, and variable X (they are [-equivalent).
Therefore, whenever an object-level inference rule performs a
substitution, we can emulate it as a meta-language application,
a primitive operation of the A-calculus.

The presence of A-abstraction allows typable terms that do
not correspond to any object language expression. A simple ex-
ample is (AX:exp. X) z, which has type exp. However, it is possi-
ble to prove that each such term is equivalent to a unique canoni-
cal form (z in this case) representing some object-level expression
(here z). Indeed, the adequacy theorem for our example states
that every expression is encoded as a unique canonical term of
sort exp and that every such term is the representation of a dis-
tinct expression.

The representation methodology we just illustrated is called



14 / ILIANO CERVESATO

higher-order abstract syntaz. This technique yields the following
elegant encoding in the case of our example:

let : exp X (exp — exp) — exp.

VE1,V, V' exp.VEy: exp — exp.
eval(Ey, V') A eval(E; V', V) = eval(let(Ey, Ez), V).

Recall here that F5 is a term of the form AX:exp. Ej. There-
fore, the application E} V' reduces to the desired substitution
[V!/X]E5. An encoding of derivations can be added to this rep-
resentation as in the previous sections.

7 Hereditary Harrop Formulas

As our object language is growing, we may be interested in distin-
guishing between expressions standing for natural numbers and
expressions denoting booleans, for example. Hardwiring this clas-
sification in the grammar of the object formalism is unsatisfac-
tory because of constructs such as “let” that operate on generic
expressions. A more flexible approach is to introduce a notion of
type in the object language. For example, our types can be:

T ::= nat | bool

We then extend the semantics of the object language with a new
typing judgment that associates a type to each expression that is
to be considered legal. We denote it as I' = E : T, where E is
an object-level expression, T' is its type, and T is a contezt that
gives the type of every free variables in E. Here are some of the
rules that define the derivability of this judgment:

hasType_var — hasType_z
Oe:T,T' +2:T I' F z:nat

'+ E :T Loe:T' v+ Ey: T
F'ktletex=FE inEy:T

hasType_let

Notice the way the context is used to assess the type of a variable,
and how (variable,type) pairs enter it when analyzing a binding
construct.
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We want to formalize this judgment and its derivations in our
meta-language. The novel aspect here is the context. A first idea
is to represent it as a list of (variable,type) pairs. This does not
work because the language introduced in the previous section
does not provide ways to declare free variables; using A-bound
variables is not very promising either since we would need means
to operate within arbitrarily many nested abstractions. A sec-
ond idea is to use some kind of index, progressive numbers for
example: in the case of the right premise of rule hasType_let,
we would pick a new index %, store it together with T” in the rep-
resentation of the context, substitute it for = in F5, and proceed
with this new expression. A specification of rule hasType_var
would dismantle the representation of the context to find the
right (index,type) pair.

Although correct, this encoding is not very immediate. A
closer look at rule hasType_let suggests a better representation:
its right premise can be read as stating that for an arbitrary
expression (indicated as z), if that expression has type T" (the
new context item z : T), then F2 (which may mention z) has
type T. Under this light, this judgment is parametric in z (and
its other free variables) and hypothetical in z : T' (and in the
other pairs in I').

This reading can easily be embedded in the meta-language we
have been using by being more liberal about the encoding of the
premises of a rule. Rather than just a predicate A, we will now
allow a premise to be represented by a formula of the following
form:

VyiiTi, .., ypiTp. C1 = ... = Cg = A.

The variables y1, ..., y, will stand for the parameters introduced
in the premise, with their sorts, and C1,...,Cy for its new as-
sumptions. If p = 0 and g = 0, this formula reduces to A, our
previous encoding of plain judgments. This extension to the rep-
resentation of inference rules takes us outside of the language of
Horn clauses, but still within the borders of the the language of
hereditary Harrop formulas [Miller 1991}, another formalism with
excellent computational properties. It has been implemented as
the logic programming language AProlog [Miller]. As a technical
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note, our new meta-language (even without sorts and higher-
order terms) is a fragment of intuitionistic logic, but not of clas-
sical logic; instead, Horn clauses belong to both.

The application of this technique to the rules above yields the
following specification:

tp : type.
nat, bool : tp.
hasType : exp X tp.
hasType(z, nat).
VE;:exp.VEs:exp —exp. VT, T tp.
hasType(E1,T") A (VX:exp. hasType(X,T") = hasType(E> X,T))
= hasType(let(E1, E»),T).

Proving the formula VX:exp. hasType(X,T") = hasType(Ex X, T),
which encodes the second premise of rule hasType_let, can be
seen as temporarily augmenting the signature with the declara-
tion x: exp for some new constant x, enriching the set of clauses
with hasType(x,T") (as if it were the representation of a new rule),
and then finding a proof of hasType(FEsx, T') where the bound vari-
able of Fs is substituted with x. Notice that, coherently with this
interpretation, there is no representation for rule hasType_var:
it is realized by having assumed a dedicated typing assumption
for each introduced parameter.

Having changed the nature of the formulas that encode in-
ference rules, we need to revise our representation of derivations.
In order to do so, consider a parametric and hypothetical judg-
ment of the form I' = E : T. A free variable z in it can be seen
as placeholders for an actual expression E’; similarly, the corre-
sponding pair z : 7' in T' can be viewed as a placeholder for an
actual derivation D’ of the fact that E’ has type T". Therefore,
a derivation D of ' + E : T differs from the derivations we have
encountered so far by the fact that it is abstract with respect
to the instantiation of its parameters and the derivations of its
assumptions. This can be emulated by using the A-abstraction
operator of our term language (we omit details for space reasons).
For example, a derivation of the judgment

- F let x =z ins(z) : nat
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(where - denotes the empty context) is represented by the follow-
ing term:

hasType_let (z, AX; :exp.X;, nat, nat,
hasType_z,
AXs : exp. AD : deriv. hasType_s (X2, D))

The last rule applied is hasType_let, as witnessed by the sym-
bol hasType_let. The first four arguments (first line) correspond
to the instantiation of its schematic variables (recall that the fact
that x is bound in the body of “let” is rendered as a A-abstraction
in higher-order abstract syntax). The second line encodes a sim-
ple derivation of the left premise of that rule (- - z: nat). The
last argument (third line) shows the representation of the para-
metric and hypothetical derivation z : nat - s(z) : nat: given an
expression Xy (for z) and a derivation D (showing that z has
type nat), it constructs a derivation of the fact that s(X3) has
type nat. The type of the constant hasType_let is: exp x (exp —
exp) X tp X tp x deriv X (exp x deriv — deriv) — deriv.

8 Dependent Types

Hand-encoding derivations as part of the predicates that rep-
resent judgments had an arbitrary flavor already when we first
used this technique in Section 4. With parametric and hypothet-
ical judgments, it acquires a degree of complexity that makes the
appearance of an instrumented clause rather cryptic and the like-
lihood of making mistakes quite high. Again, this goes against
immediacy.

The structure of our encoding of derivations is however sim-
ple: we have one constant per clause, and its type is isomorphic
to the structure of this formula. Compare for example the skele-
ton of the above clause for rule hasType_let (left) and the type
of the associated constant hasType_let (right):

V_:exp.V_texp—exp.V_:tp.V_o:tp. | exp x (exp — exp) X tp X tp X
hasType _ A deriv x
(V_:exp. hasType _ = hasType _) (exp x deriv — deriv)
= hasType _ — deriv
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This observation suggests that the type of a derivation constant
such as hasType_let can be computed from the associated clause.
Going one step further, a clause ascertaining the derivability of
a judgment can be augmented automatically to check deriva-
tions. Although an important realization, this is still very ad-
hoc. We will instead go the other way around and enrich our
language of types so that the declaration of a derivation con-
stant will subsume the corresponding clause. This idea (as well
as the above observation) rests on a fascinating correspondence
between logic and type theory known as the Curry-Howard iso-
morphism [deGroote 1995]. We will now sketch how this can be
achieved.

In the absence of errors, positively verifying that a given term
D has type deriv ensures that D is the representation of a valid
derivation. We may ask: “a derivation of what judgment?”. We
can easily refine our encoding to discriminate generically between
typing and evaluation derivations, for example by replacing deriv
with sorts hasType_deriv and eval_deriv. However, being more
specific is not achievable in any simple way.

Upgrading our language of declarations to a dependent type
theory enables us to verify whether a term D is a valid deriva-
tion of a judgment I' = E : T for specific £ and T, for exam-
ple: indeed, it allows us to check whether the type of D is
hasType_deriv(E*,T*), where E* and T™* are the encodings of
FE and T, respectively. Observe that hasType_deriv has now two
arguments. The type of the constant hasType_let now assumes
the following scary form:

IIE;:exp. [1Es:exp — exp. IIT, T": tp.
hasType_deriv (E1, T")
x (IIX:exp. hasType_deriv (X, T') — hasType_deriv (E; X, T))
— hasType_deriv (let (Ey, E»), T).

where the dependent type constructor Il declares the type and the
scope of variables. Informally, assigning this type to hasType_let
specifies that, given encodings D; and Ds for derivations of
' E:T and T,z:T'F E;:T respectively, the term
hasType_let (Ey, Eo, T, T', D1, D3) represents a derivation of T' F
letm:El iIlEQ :T.
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Adopting a dependent type theory not only enables a finer
classification of types, but it also allows us to dispense with the
clausal representation of inference rules altogether. Observe in-
deed that the above type is isomorphic to the clause for
hasType_let: simply replace hasType_deriv with hasType, IT with
V, x with A, and — with =. This fact results from the Curry-
Howard isomorphism.

The type theory we briefly described is closely related to the
language of the logical framework LF [Harper 1993]. It admits
decidable type-checking and an interpretation as a higher-order
logic programming language. This popular logical framework has
been implemented as the Twelf environment [Twelf].

9 Further Issues

The logical framework we just finished sketching permits ade-
quately and elegantly representing numerous formalisms. How-
ever, there are entire classes of deductive systems that cannot be
given an immediate formalization in that language. Certain is-
sues have been successfully addressed by enacting the refinement
methodology presented in this paper. For example, formalisms
that embed a notion of mutable state (e.g. procedural program-
ming languages such as C and Java, databases, or process calculi)
can be given adequate representations within logical frameworks
based on a linear type theory [Cervesato 1996].

Other issues are the object of intensive research. Among these
we should recall the representation of properties that apply to all
individual elements of a given class (extensional universal quan-
tification) and the related notion of non-derivability (negation).
Another example is the concept of ordered assumptions.
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