
15-312: Evaluation and Functions I. Cervesato

15-312 Lecture on
Evaluation and Functions

Diagrammatic View of the Evaluation Process

Program

?

�
�@

@
�

�@
@

Parsing

?

-Yuk!

�
�

��@
@

@@
�

�
��@

@
@@

Typechecking -Yuk!

?

Evaluation

Value

�
�
��

Run-time
error

�
�
�
��

Type
error

.
.
.
.
.
.
.W

Evaluator
stuck

.

.

.

.

.

.

.

.

.

.

.?

Non
termination

A
AAU

Figure 1: The Evaluation Process

Once a program or expression has successfully been parsed and typechecked, there
can be 5 outcomes of evaluation (3 acceptable, 2 unacceptable):

1. A valueis returned. This is typically the expected outcome of evaluation.

February 1, 2008 1



15-312: Evaluation and Functions I. Cervesato

2. A run-time erroris produced. By run-time error, we mean some dramatic event
such as a division by zero or an integer overflow, which cannot generally be
caught by the typechecker. We have seen that run-time errors can be treated as
a very special form of returned values. We will see that we can also treat them
using exceptions.

3. Non-termination: sometimes this results from a bug in the program, but it can
also be a design decision for reactive systems such as a user interface (think
Windows, or your cell phone).

4. A type erroris produced. This should never happen of a well-designed language.
A correct proof of a type preservation theorem prevents this.

5. The evaluator getsstuckand does not know what to do. This can happen if
a transition was forgotten. This too should never happen of a well-designed
language. A correct proof of a progress theorem prevents this.

Relating Transition and Evaluation Semantics

The theorem you want to prove is as follows:

Theorem 1 Lete be an expression, thenE :: e ⇓ v iff T :: e 7→∗ v andV :: v val.

The two directions are proved separately. Going right-to-left is fairly easy:

Lemma 2 Lete be an expression. IfE :: e ⇓ v, then there exist derivationsT :: e 7→∗ v
andV :: v val.

Proof: By induction onE . Applications of the induction hypothesis correspond to
unfoldingE so that the resulting transition sequence that is one step shorter than what
we want, and then extending it as needed to obtainT . 2

The other direction requires care because the transition semantics is defined on the
basis of the single step transition judgment, while the desired result refers to the entire
transition sequence. We circumvent this fact by means of the following lemma, which
concentrates on the step transition judgment.

Lemma 3 Given expressionse ande′ and a derivationV :: v val, if T :: e 7→∗ e′ and
D :: e′ ⇓ v, then there is a derivationE :: e ⇓ v.

Proof: By induction onD. 2

Then, the desired left-to-right direction of the theorem is a simple corollary.

Corollary 4 Given an expressione, if T :: e 7→∗ v andV :: v val, then there is a
derivationE :: e ⇓ v.

Proof: By induction onT . 2

February 1, 2008 2



15-312: Evaluation and Functions I. Cervesato

Deconstructing ML Functions

Consider the usual ML declaration for the factorial function:

fun fact (n: int): int =
if (n = 1)

then 1
else n * fact (n-1)

We will now see that it relies on at least 3 language features that we will study sepa-
rately in this course.

1. Name Binding: A first thing that happens in the above declaration is that the
name “fact ” is bound and available in the code that follows. This is more
evident if we expand “fun ” into the declaration it actually abbreviates:

val rec fact = fn (n: int) =>
if (n = 1)

then 1
else n * fact (n-1)

We have already encountered this mechanism, although with a different syntax,
as the “let ” construct.

2. Recursion: The keyword “rec ” indicates that this is a recursive declaration.
We will define the semantics of recursion in a few lectures.

3. Functions: The keyword “fn ” introduces a function, which is the main concept
of the current lecture. This mnemonic ML keyword is often written using the
Greek letterλ (lambda) in the semi-abstract syntax, and “lam ” as an abstract
syntax constructor.

In truth, what is commonly viewed as an ML function hides many more constructs,
which we will examine in later parts of this course. A function accepting multiple
arguments formally relies ontuples. In the above example, calling “fact ” with a
negative argument (or an argument that is too large) will eventually trigger anexcep-
tion. And of course, only the greenest of beginners would write “fact ” as we did, as
patternsas so much more convenient to use:

fun fact (0: int): int = 0
| fact (n) = n * fact (n-1)

Macho ML programmers and inexperienced students will rely ontype reconstruction
to quickly whack this function as:

fun fact 0 = 0
| fact n = n * fact (n-1)

February 1, 2008 3


