15-312: Recursive Functions I. Cervesato

15-312 Lecture on
Recursive Functions

Defining Recursive Functions

Let's see how the familiar factorial function looks like once we expose the recusion.

Here is the definition:
fun fact(n) =

ifn=0
then 1
else n x fact(n — 1)

(without patterns, because we haven't studied yet how to handle them.) Then the formal
definition looks like this:

rec[nat — nat](fact.
An : nat.ifz(n, 1,n * fact(n — 1))

Here,fact is the bound name of the recursion: it stands for the object we are recursing
upon. In this case, this is a function fromat to nat. We are using the construit,
which discriminates on whether its first argument is zero or not.

For typographic convenience, we will omit the types below (of course this should
not be done, but it makes things a lot easier to write). This definition then looks like

rec(fact. An.ifz(n, 1, n x fact(n — 1)))

Furthermore, we will occasionally use the abbreviatifaet”(quotes included) to refer
to this whole expression.

Using Recursive Functions

Let’s calculate (fact”2):

February 1, 2008 1

15-312: Recursive Functions I. Cervesato

“fact” 2 +— ([“fact”/fact](An.ifz(n, 1, n * fact(n — 1))) 2)
= (ifz(n,1,n % “fact"(n — 1)) 2)
— [2/n](ifz(n,1,n * “fact” (n — 1)))
= ifz(2,1,2 % “fact”(2 — 1))
— 2x"fact”(2-1)
— 2% ([*fact” /fact](An.ifz(n,1,n x fact(n — 1))))(2 — 1)
= 2x(An.ifz(n,1,n x“fact”(n — 1)))(2 — 1)
— 2% (An.ifz(n, 1, n x “fact”(n — 1)))(1)
— 2% [1/n](ifz(n,1,n % “fact” (n — 1)))
= 2xifz(1,1,1*“fact"(1 — 1))
— 2% 1x“fact”(1—1)
— 2% 1« (["fact” /fact](An.ifz(n, 1,n * fact(n — 1))))(1 — 1)
= 2x1x(An.ifz(n,1,n*"“fact”(n —1)))(1 — 1)
— 2% 1% (An.ifz(n,1,n % “fact” (n — 1)))(0)
— 2% 1%[0/n](ifz(n, 1,n * “fact”(n — 1)))
= 2x1xifz(0,1,0 % “fact” (0 — 1))
= 2x1x1
— 2x1
— 2

For readability, we have separated the three recursive calls and the final arithmetic
calculation.

February 1, 2008 2

