
15-312: Recursive Types I. Cervesato

15-312 Lecture on
Recursive Types

Recursive Types

Give a man a fish and he will eat one day; teach a man to fish and he will
eat every day.

Recursive types can be understood in the light of this proverb. When studying Gödel’s
T, we introduced all the tools we need to work with natural numbers: the basic con-
structors (z ands) and the universal destructor (natrec). In an homework, we saw that
lists of natural numbers and binary trees could be defined in a similar way. We could
use the same mold to define strings, lists of lists, etc. This becomes rather tedious af-
ter a while, though: we keep on defining operators that are mostly identical over and
over. Even worse, each of these types is hardwired in the language: if we have de-
signed and implemented a language with lists, adding trees amounts to designing and
implementing a new language.

Recursive types capture what all these special-purpose types have in common, and
provides a single construction to define them all: once we design a language with re-
cursive types, we automatically have a language where we can define natural numbers,
lists, trees, etc., whatever type of this sort we can think about.

A recursive type is a type whose definition refers to itself. With the exception
of pure enumeration types (e.g.,bool), ML datatypes are recursive1. Because the
definition of a recursive type refers to itself, there are infinitely many terms of this type
(again, think about natural numbers, lists, trees, etc.).

Syntax

Types τ ::= t | arrow(τ1, τ2) | rec(t.τ)
Expressions e ::= x | lam[τ](x.e) | app(e1, e2)

| fold[t.τ](e) | unfold(e)

We include functions in this definition because they provide a starting point for expres-
sions (unit would perform this task equally well), and also because several interesting
behaviors involve functions. They are not an essential component of recursive types,
although they make using them interesting.

1ML datatypes also make use of other primitives, namely polymorphism (e.g.,’a list) and type def-
initions (the possibility of giving a name to a type, in the same way aslet allows us to give a name to an
expression).

February 10, 2008 1

15-312: Recursive Types I. Cervesato

Recursive types introduce a notion oftype variable, written t above. The recursive
typerec(t.τ) bindst within the typeτ , which could now refer tot.

Intuition

Consider the following ML definition for lists of natural numbers:

datatype natList = Nil | Cons of int * natList

Intuitively, a list of integers such asCons(3,Cons(2,Cons(1,Nil))) has two
types: if we consider it as a whole, it is an expression of typenatList ; if look more
closely, it is a pair consisting of the integer3 (the head of the list) and the list of integers
Cons(2,Cons(1,Nil)) (its tail). The job offold andunfold is to mediate these
two types:

Cons(3, Cons(2, Cons(1, Nil))) : natList

unfold

y
x fold

Cons(3 , Cons(2, Cons(1, Nil))) : int ∗ natList

Every time we build a list from a head and a tail, we are implicitly doing afold operation
to convert the two parts into a list. Similarly, every time we look at what is inside a list,
by means of pattern matching or a case construct, we are unfolding it into its definition.

We will now see what this means formally.

Typing Semantics

Because recursive types rely on binders, it is worth using a judgment to formalize when
they are well formed. This judgment is∆ ` t type, with ∆ a set of hypotheses of the
form t1 type, . . . , tn type. It is defined as follows:

tp id

∆, t type ` t type

∆ ` τ1 type ∆ ` τ2 type
tp arrow

∆ ` arrow(τ1, τ2) type

∆, t type ` τ type
tp rec

∆ ` rec(t.τ) type

The typing judgment for expressions assumes the form∆; Γ ` e : τ , where∆ is a
typing context for type variables andΓ is a typing context for expression names. The
typing rules for expressions is as follows. The rules for functions are as usual, with the
addition of the typing context∆ which plays no role in them.

∆, t type ` τ type ∆; Γ ` [rec(t.τ)/t]e : [rec(t.τ)/t]τ
tp fold

∆; Γ ` fold[t.τ](e) : rec(t.τ)

∆; Γ ` e : rec(t.τ)
tp unfold

∆; Γ ` unfold(e) : [rec(t.τ)/t]τ

February 10, 2008 2

15-312: Recursive Types I. Cervesato

Note that a bottom up typechecker recovers the type ofe and can use it to compute the
type ofunfold(e). This is the reason whyunfold does not need to be annotated with a
type.

Transition Semantics

fold is the constructor of expressions of a recursive type and therefore form the basis
for values of this type.unfold is the destructor and the two annihilate each other when
they meet.

v val
val fold

fold[t.τ](v) val

e 7→ e′
step fold

fold[t.τ](e) 7→ fold[t.τ](e′)

e 7→ e′
step unfold

unfold(e) 7→ unfold(e′)

v val
step unfold fold

unfold(fold[t.τ](v)) 7→ v

Type Safety Theorem

The type safety results are as usual and they are proved using the techniques we have
seen.

1. Type Preservation: If T :: Γ ` e : τ andE :: e 7→ e′, thenT ′ :: Γ ` e′ : τ .

2. Progress: If T :: · ` e : τ , then eitherV :: e val or S :: e 7→ e′.

Deconstructing ML Datatypes

Consider again the above ML definition for lists of natural numbers:

datatype natList = Nil | Cons of int * natList

This definition provides us with a type (natList), two constructors (Nil andCons),
and a destructor (in ML it is the case statement

case e of Nil => eNil | Cons(n,l) => eCons

but this is really just the iteratorlistrec(e, eNil, n.l.eCons)).
Let’s see what is going on under the hood now that we know about recursive types.

First of all, let’s model the typenatList itself. We are going to have a variant record
containing one of two things: something that we will understand asNil and something
else that will stand forCons:

• Nil by itself is just a marker, an entity that carries no other information besides
the fact that it is there. This suggests usingunit, the nullary product type, to
represent it.

February 10, 2008 3

15-312: Recursive Types I. Cervesato

• Cons is a pair consisting of a number and a recursive element of typenatList .

We will use the namesnil andcons as labels in a labeled variant (to distinguish them
from the constructors, we use all-lowercase words). Then, in the concrete syntax,
natList is defined as

µ natList .[nil : unit; cons : int× natList]

If we want to use the abstract syntax, we have instead

rec(natList .var[nil, cons](unit, prod(unit,natList)))

Note thatnatList is just a bound name here (we could have used “t”) — making it
available as a name in a program requires other linguistic features, type definitions. We
will abbreviate either of these two type expressions as “natList” (including the quotes).
In particular, when we write “natList” in an expression, we mean the above recursive
type, not the type variable.

Let’s now define the operations that have to do withnatList , namely the con-
structorsNil andCons and an example of thecase statement. To make things more
readable, we will write the types appearing in an expression ingray. We start with the
constructorsNil andCons.

• How do we build an empty list? Well, there is only one object of typeunit, that
is (). Next we need to package it as thenil-labeled entry of a variant of type
[nil : unit; cons : int× “natList”], that is

[nil = ()][nil:unit;cons:int×“natList”]

and finally we fold it into an object of type “natList”:

fold[natList .[nil : unit; cons : int× natList]]
([nil = ()][nil:unit;cons:int×natList])

Let us rewrite this using the abstract syntax:

fold[natList .var[nil, cons](unit, prod(unit,natList))]
(inj[var[nil, cons](unit, prod(unit,natList)); nil](unit))

• Cons is defined exactly in the same way, except that we need to pass it two
arguments: the natural number and the list that we want to cons together. The
concrete syntax is

λn: int.λl: “natList” .fold[natList .[nil : unit; cons : int× natList]]
([cons = (n, l)][nil:unit;cons:int×“natList”])

and the abstract syntax is

lam[int](n.
lam[“natList”](l.
fold[natList .var[nil, cons](unit, prod(unit,natList))]

(inj[var[nil, cons](unit, prod(unit, “natList”)); nil](pair(n, l)))))

February 10, 2008 4

15-312: Recursive Types I. Cervesato

• We are left with thecase statement. We will not be able to definelistrec until
we study polymorphism. Instead, we will look at a sample instance.

As an example, let’s define the functionhead (a destructor), which returns the
element at the head of a list of integersl, in ML:

case l of Nil => 0 | Cons(n,l) => n

where we are returning0 if the list is empty (we will take more interesting actions
once we work with languages with exceptions).

By definition,l will be given to us as an expression of type “natList”. Therefore,
we need to unfold it to access the inner variant and then discriminate on the tag.
The overall code is as follows:

λl: “natList” .case (unfold l)
of [nil = ()] => 0
| [cons = p] => fst(p)

The corresponding abstract syntax is

lam[“natList”](l.
case[int, int; nil, cons](unfold l,

u.0,
p.fst(p))

Other typical functions on lists, for example thetail function, or the function that
checks whether a list is empty, are defined similarly.

Recursive Functions Revisited

For a moment, let’s step to an untyped functional language, the simplest of them all,
containing only functions and applications:

Untyped expressions e ::= x | λx. e | e1 e2

For convenience, we are showing only the concrete syntax. Note that there is no type
decoration forλ. Assume a call-by-name semantics for this language.

Now, consider the expressionY defined as follows:

Y = λf. (λx. f (x x)) (λx. f (x x))

(This weird expression goes by the name ofcall-by-nameY combinator).2 Call Y ′ the
subexpression bound byλf so thatY = λf. Y ′. Now, let’s partially evaluate starting

2There is also a slightly more complicatedcall-by-valueY combinator — see Pierce’s book.

February 10, 2008 5

15-312: Recursive Types I. Cervesato

it from a functionλg. e, wheree is any expression, possibly containingg:

Y (λg. e) = (λf. (λx. f (x x)) (λx. f (x x))︸ ︷︷ ︸
Y ′

) (λg. e)

7→ (λx. (λg. e) (x x)) (λx. (λg. e) (x x))︸ ︷︷ ︸
[λg. e/f]Y ′

7→ (λg. e) ((λx. (λg. e) (x x)) (λx. (λg. e) (x x))))︸ ︷︷ ︸
[λg. e/f]Y ′

7→ [(λx. (λg. e) (x x)) (λx. (λg. e) (x x))︸ ︷︷ ︸
[λg. e/f]Y ′

/g]e

We get therefore that
[λg. e/f]Y ′ 7→∗ [[λg. e/f]Y ′/g]e

If we define the function recursor3 fix(g.e) to be[λg. e/f]Y ′, this corresponds to the
familiar step in the semantics offix: i.e.,fix(g.e) 7→ [fix(g.e)/g]e.

With Y ′ in hand, there is no need to have an explicit recursion operator since it
behaves in the desired way. The problem is thatY , and thereforeY ′, is not typable in
a functional language without recursive types.4 Try it!

Recursive types change this picture dramatically. Consider the function recursor
fix[τ](g.e) for a specific typeτ (again, we haven’t yet examined polymorphism). Then,
we can give a type to the theY combinator that operates on functions of typeτ = τ ′ →
τ ′ (which is also the type of the bound variableg). Call it Yτ :

Yτ = λf : τ → τ. (λx : µt.t → τ. f ((unfold x) x))
(fold[µt.t → τ](λx : µt.t → τ. f ((unfold x) x)))

Let’s check if the types work:

λf : τ → τ.

(µt.t→τ)→τ︷ ︸︸ ︷

(λx : µt.t → τ.

τ︷ ︸︸ ︷
f

τ︷ ︸︸ ︷
(

(µt.t→τ)→τ︷ ︸︸ ︷
(unfold x)

µt.t→τ︷︸︸︷
x))

(fold[µt.t → τ] (λx : µt.t → τ. f ((unfold x) x))︸ ︷︷ ︸
(µt.t→τ)→τ (see above)

)

︸ ︷︷ ︸
µt.t→τ

Now, by applying the right part of the top line to the second, we obtain a term of type
τ . Finally, by abstracting overf , we obtain(τ → τ) → τ .

The type of our makeshift recursor would then beτ .

3In earlier lectures, we wrote this operator asrec. We now switch tofix to avoid confusion with the
recursive type constructor.

4In general, there is no simple typeτ such that(x x) : τ

February 10, 2008 6

15-312: Recursive Types I. Cervesato

Objects Revisited

When talking about product types, we saw that objects are a form of recursive prod-
uct: a standard record was extended with one extra binder in each field which stood
for the entire object. Now that we have recursive types, we do not need this special
construction. We can instead assemble an object directly from product types usingrec.

Consider as an example the counter object adapted from Pierce’s book: this counter
contains one field,val, corresponding to the value of the counter itself, and two meth-
ods,inc anddec, to increment and decrement it, respectively. The type of this counter
object is given by the following recursive type:

µC. {val : int, inc : unit → C, dec : unit → C}

Let’s refer to this type as “counter” (again with quotes). Given an objectc of type
“counter”, we obtain its value by unfolding it to a record and then projecting on the
labelval:

prj[val](unfold(c))

To increment the counter, we similarly project on labelinc and apply the resulting
function to the unit value:

(prj[inc](unfold(c))) ()

The value returned by this application is a new counter.
How do we create an object? We will define a functionnew that when applied to

some numbern creates an object with initial value ofn. It is easiest to start with an
ML-like concrete syntax extended with labeled records:

fun new(n: int) =
(val = n,
inc = λu: unit. new(n + 1),
dec = λu: unit. new(n− 1))

The corresponding concrete syntax is as follows:

fix[int → “counter”](new .
lam[int](n.{val = x,

inc = lam[unit](new (n + 1))
dec = lam[unit](new (n− 1))}))

Note that all recursion is encapsulated in the use offix.

February 10, 2008 7

