
15-312: Substitutions I. Cervesato

15-312 Lecture on
Substitutions

Here, we will consider the language

Expressions e ::= num[n] | plus(e1, e2)
| str[s] | cat(e1, e2)
| x | let(e1, x.e2)

but this can be generalized to any language.
We will define what it means to substitute an expressione for a namex in another

expressione′, which we write[e/x]e′. As a concrete example (using concrete syntax),
we will need to do this when evaluating an expression of the form

let
x = e1

in
e2

end

Substitutions Assuming Automaticα-Renaming

Assuming terms are automaticallyα-renamed so that bound are always different from
previously encountered names,[e/x]e′ is defined inductively on the structure ofe′ by
the following equalities:

[e/x](num[n]) = num[n]
[e/x](plus(e′

1, e
′
2)) = plus([e/x]e′

1, [e/x]e′
2)

[e/x](str[s]) = str[s]
[e/x](cat(e′

1, e
′
2)) = cat([e/x]e′

1, [e/x]e′
2)

[e/x]x = e

[e/x]y = y for y 6= x

[e/x](let(e′
1, z.e′

2)) = let([e/x]e′
1, z.([e/x]e′

2))

Here, automaticα-renaming transparently changes the name of the bound variable
of the let to some new name, sayz, that does not appear neither ine2 nor in e. For

January 19, 2008 1

15-312: Substitutions I. Cervesato

example, it automatically rewrites

let
x = 2 ∗ y

in
let x = 2 ∗ x in x + x end

end

to
let

x = 2 ∗ y
in

let z = 2 ∗ x in z + z end
end

We will always assume to have automaticα-renaming, but let’s see what would
happen if we didn’t have it.

Substitutions without Automatic α-Renaming

The only equalities that need to be change are the one with binders, here the one about
let. Let’s examine a couple of cases and come up with definitions for them.

Same Variable

Let’s consider the last example again. We have

let
x = 2 ∗ y

in
let x = 2 ∗ x in x + x end

end

and to evaluate it we want to substitute2 ∗ y for x in let x = 2 ∗ x in x + x end.
Then, we are free to carry out the substitution in the subterm2 ∗ x which is bound by
the outerx, but we should leavex + x alone because it is bound by the innerx. So
there result should belet x = 2 ∗ 2 ∗ y in x + x end. The general rule is then:

[e/x](let(e′
1, x.e′

2)) = let([e/x]e′
1, x.e′

2))

All the occurrences ofx in e′
2 will be bound by the “x.” of this let , so there are no

“free” occurrences ofx in x.e′
2.

Different Variable — Case 1

Let’s consider a small variant of the second example, then:

let
x = 2 ∗ y

in
let z = 2 ∗ x in x + z end

end

January 19, 2008 2

15-312: Substitutions I. Cervesato

Here, substituting2 ∗ y for x in let z = 2 ∗ x in x + z end is a simple syntactic
substitution and the result islet z = 2 ∗ 2 ∗ y in 2 ∗ y + z end. The definition in this
case seems to be something like this:

[e/x](let(e′
1, z.e′

2)) = let([e/x]e′
1, z.([e/x]e′

2))) for z 6= x

This is correct only ifz does not occur anywhere ine1. Consider the following example
where it does:

let
x = 2 ∗ y

in
let y = 2 ∗ x in x + y end

end

If we blindly apply this rule, we obtain

let y = 2 ∗ 2 ∗ y in 2 ∗ y + y end

and the occurrence ofy in the substituting term2 ∗ y has been captured by the binder
once substituted forx in x + y.

A simple fix is to add the condition thaty does not occur free ine. The updated
case is as follows:

[e/x](let(e′
1, z.e′

2)) = let([e/x]e′
1, z.([e/x]e′

2))) for z 6= x andz 6∈ FV(e)

But what ifz is free ine?

Different Variable — Case 2

. . . then we have to implementα-renaming. We are going to chose a new name, sayz̄,
substitute it forz insidee2, and bind the result with it. Here, it is important thatz̄ be
new, that is does not occur free in eithere2 or e. The definition becomes:

[e/x](let(e′
1, z.e′

2)) = let([e/x]e′
1, z̄.([e/x]e′′

2))) wherez̄ is new ande′′
2 = [z̄/z]e2

We may take this definition as a third case forlet whenz 6= x butz ∈ FV(e).
We can also take it as the single definition of substitution forlet because it subsumes

the other two cases.

Again, we will always assume thatα-renaming happens automatically in the back-
ground.

January 19, 2008 3

