
15-312: Sum Types I. Cervesato

15-312 Lecture on
Sum Types

BREAKING NEWS: Starbucks TM Adopts Variant Types

The easiest way to understand variant types is to got to Starbucks for a coffee. Your
order will be placed in a paper cups like the one to the right.

StarbucksD
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DD �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Regular

Cappuccino

Americano

Latte

Espresso

Macchiato

Mocha

This paper cup is a variant type, a container where you can put any of the types of
coffee listed on the back side. Using the concrete syntax,

starbuckscup= [Regular : RegularCoffee
Cappuccino: CappuccinoCoffee
Americano : AmericanoCoffee
Latte : LatteCoffee
Espresso : EspressoCoffee
Macchiato : MacchiatoCoffee
Mocha : MochaCoffee]

When a Starbucks employee processes your order for a short cappuccino, giving you
a cup of the delicious beverage with a checkmark on the item “Cappuccino”, he has
just built an injection: he has placed a Cappuccino (to which we have ascribed the type
“CappuccinoCoffee” above) into a cup, therefore obtaining an object of type “star-
buckscup”:

Your Cup= inj[starbuckscup; Cappuccino](short cap)

February 10, 2008 1

15-312: Sum Types I. Cervesato

Now the cashier will use acase statement to figure out the price that you need to pay:

case Your Cup
of Regular => $1.95
| Cappuccino => $3.25
| Americano => $2.15
| Latte => $3.25
| Espresso => $2.50
| Macchiato => $2.50
| Mocha => $2.95

N-Ary Sums

What would this same example been like if we had used n-ary sums? The cup would
look like:

StarbucksD
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DD �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

1.

2.

3.

4.

5.

6.

7.

and the corresponding sum type would be:

starbuckscup= sum(RegularCoffee
CappuccinoCoffee
AmericanoCoffee
LatteCoffee
EspressoCoffee
MacchiatoCoffee
MochaCoffee)

It is your job to remember that item 2 is a cappuccino — not a great business model!
When you order this cappuccino, the employee would perform the following injection:

Your Cup= inj[starbuckscup; 2](short cap)

February 10, 2008 2

15-312: Sum Types I. Cervesato

and the cashier would use the following table when it is time to pay:

case Your Cup
of 1 => $1.95
| 2 => $3.25
| 3 => $2.15
| 4 => $3.25
| 5 => $2.50
| 6 => $2.50
| 7 => $2.95

Binary Sums

I don’t know if it is true, but you can imagine that in the old days Starbucks was serving
just two beverages: coffee and tea. It was a small company, and printing anything on
a cup was expensive. Instead, it was buying its cups from a provider that put only two
squares to mark on the cup:

D
D
D
D
D
D
D
DD �

�
�
�
�
�
�
��

(Cups were also smaller back then.) This starbucks start up had decided that if the
customer ordered a coffee, the employee was to mark the left box, and for a tea, the
right box would be checked. So, the type of this cup was

early starbuckscup= sum(Coffee, Tea)

You could not order a cappuccino then, but if you wanted a good old cup of Joe, the
employee would perform a left injection:

Your Cup= injl[earlystarbuckscup](joe)

and the cashier would do a very very simple case analysis to decide how much to charge
you:

case Your Cup
of inl() => $0.95
| inr() => $0.55

Back then, even Starbucks had inexpensive coffee!!!

February 10, 2008 3

15-312: Sum Types I. Cervesato

Nullary Sums

Given all this, what is a nullary sum type? It is a cup where you cannot put any
beverage, maybe because the lead is sealed:

D
D
D
DD �

�
�
��

We represent this with a sum with no alternatives, which is often calledvoid:

sealedcup= void

You can imagine this cup as a scam on the Internet, something that Starbucks does not
carry.

Because Starbucks does not carry it, an employee does not know how to fill it, and
there are no injections.

Similarly, if for some reason you show up with such a cup and try to pay, the cashier
does not know what to charge you: there is no beverage that can go in it and so it’s a
case with zero branches.

case Your SealedCupof ?? => {}

This is an event that should never happen!

February 10, 2008 4

