
15-312: Concrete and Abstract Syntax I. Cervesato

15-312 Lecture on
Concrete and Abstract Syntax

Solution to Exercise 1

In a deductive system containing the rules fornat andsum(, ,):

z nat

z nat

n nat
s nat

s n nat

n nat
sum z

sum(z, n, n)

sum(m,n, p)
sum s

sum(s m,n, s p)

prove that:

If D :: sum(m,n, p), then there exists derivationsDm :: m nat, Dn ::
n nat andDp :: p nat,

Proof: The proof proceeds by induction on the structure of the given derivationD.
There are two cases to examine:

1. Case:

D =

D′
n

n′ nat
sum z

sum(z, n′, n′)

Then, it must be the case thatm = z, n = n′ andp = n′. We need to build
derivations ofm nat, n nat andp nat. These are easily obtained as follows:

Dm = z nat

z nat
Dn = D′

n Dp = D′
n

This concludes this case of the proof.

2. Case:
D′

sum(m′, n′, p′)
sum s

sum(s m′, n′, s p′)

January 19, 2008 1

15-312: Concrete and Abstract Syntax I. Cervesato

Then, it must be the case thatm = s m′, n = n′ andp = s p′. Since we have a
derivationD′ of sum(m′, n′, p′), by induction hypothesis onD′, we can assume
that there exist derivationsD′

m :: m′ nat, D′
n :: n′ nat andD′

p :: p′ nat.

We need to build derivations ofm nat, n nat andp nat. We obtain them as
follows:

Dm =

D′
m

m′ nat
s nat

s m′ nat
Dn = D′

n Dp =

D′
p

p′ nat
s nat

s p′ nat

This concludes this case of the proof.

This concludes the proofs since we have proved each case. 2

Solution to Exercise 2

In the following deductive system for transition sequences:

id

s 7→∗ s

s 7→ s′ s′ 7→∗ s′′
it r

s 7→∗ s′′

show that the following rule is admissible:

s 7→∗ s′ s′ 7→ s′′
it l

s 7→∗ s′′

Is it derivable?

Let us rephrase this question as a property. Prove that

For every derivationsD :: s1 7→∗ s2 and E :: s2 7→ s3, there exists a
derivationF :: s1 7→∗ s3

(We have renamed the states for clarity.)

Proof: The proof proceeds by induction on the structure of derivationD. (Note that
we have not given any rule for the judgments 7→ s′ and therefore we have no idea
what a derivation ofE looks like. For this reason, we cannot proceed by induction on
E). There are two cases to examine, one for each rule defining the judgments 7→∗ s′:

1. Case:
D = id

s 7→∗ s

wheres1 = s2 = s.

Since the derivationE :: s 7→ s3 is given to us (recall thats2 = s), we build the
desired derivationF as follows:

F =

E
s 7→ s3

id

s3 7→∗ s3
it r

s 7→∗ s3

January 19, 2008 2

15-312: Concrete and Abstract Syntax I. Cervesato

Note how we are usingE on the left of the construction forF while it would ap-
pear on the right in the admissible rule. Note also how we needed to reconstruct
from scratch the right subderivation of rulelt r.

2. Case:

D =

D′

s 7→ s′

D′′

s′ 7→∗ s′′

it r

s 7→∗ s′′

wheres1 = s, s2 = s′′ ands′ is some intermediate state that must exist for this
rule to have been applied.

SinceD′′ is smaller thanD, we can apply the induction hypothesis toD′′ and
E and this allows us to postulate the existence of a derivationF ′′ :: s′ 7→∗ s3.
We can then combine derivationsD′ andF ′′ using ruleit r into the desired
derivationF as follows:

F =

D′

s 7→ s′

F ′′

s′ 7→∗ s3
it r

s 7→∗ s3

which is what we wanted sinces1 = s.

This concludes the proof of this statement, and this also allows us to conclude that rule

s 7→∗ s′ s′ 7→ s′′
it l

s 7→∗ s′′

is admissible. 2

To understand why ruleit l is not derivable, note the shape of a proof ofs 7→ s′

using rulesid andit r: it is a tree that is completely unbalanced to the right with all the
left branches consisting of subderivations of the judgment7→ . So, every derivable
rule may have premises for7→ on the left but the rightmost premise will have to be
for the 7→∗ judgment.

Instead, a derivation that usesit l has a subderivation for the7→ judgment as its
rightmost premise. For this reason, it cannot be derived from rulesid andit r. Note
that it builds a derivation that grows left. Indeed, if onlyid andit l are ever used, the
resulting derivation tree will be completely unbalanced toward the left.

To reinforce these concepts, prove that the following deductive system is equivalent
to :

id′

s 7→∗ s

s 7→ s′
it′ step

s 7→∗ s′

s 7→∗ s′ s′ 7→∗ s′′
it′ lr

s 7→∗ s′′

(Note that both premises ofit′ lr use the transition sequence — not step — judgment.)

January 19, 2008 3

15-312: Concrete and Abstract Syntax I. Cervesato

Strings from First Principles

Given an alphabetΣ, we define the judgmentc charΣ to indicate thatc is a character
in Σ. It is extensionally defined by giving one rule for eachc ∈ Σ:

c

c charΣ

Then, strings overΣ are just lists of characters withε as the empty string (correspond-
ing to the empty list of characters) and the constructor· , wherec · s indicates the
extension of strings with characterc (on the left):

str ε

ε stringΣ

c charΣ s stringΣ
str ·

c · s stringΣ

From now on, we will assume that the alphabetΣ is fixed, and omit it as a subscript of
these judgments.

Traversing strings left to right one character at a time is rather tedious. We’d
like to manipulate strings as a concatenation of substrings. Let’s define the judgment
s as s1 ŝ2 that splits a strings as the concatenation of two strings1 ands2 (or dually
buildss as the concatenation ofs1 ands2):

s string
ˆ r

s as ε̂ s

s as s1 ŝ2
ˆ l

c · s as (c · s1)̂ s2

Note that the mode of these rules is(∃!,∀,∀), thus implementing a concatenation
function. However, if we think about them as splitting a given string, they are non-
deterministic because a string can be split in many ways (it also has mode(∀,∃,∃)).

Lexing

The following grammar provides the raw concrete syntax for simple arithmetic expres-
sions:

Spaces ::= ε | <space> | <tab> | <new line>
Digits D ::= 0 | 1 | . . . | 9
Numbers N ::= D | D N
Expressions E ::= N | E ++ E | E * E

We have written addition as++ rather than+ for illustration purposes.
Raw concrete syntax is what we type on a computer and write on paper, but it is

contains a number of distracting details when we want to reason about a language as
a mathematical object. We will eventually rely onterms, or abstract syntax trees, for
this purpose.

A first step in this direction is to isolate the tokens that constitute a phrase, without
bothering yet about the tree structure. We want in particular to ignore spaces, interpret
numbers as numbers rather than sequences of digits, and give composite keywords (for

January 19, 2008 4

15-312: Concrete and Abstract Syntax I. Cervesato

example++ above) an atomic representation.Lexingwill reduce that grammar to this
one:

Expressions E ::= num[n] | E + E | E ∗ E

Here,num[n], + and∗ are tokens, wheren is a natural number (in decimal notation
for simplicity). We used a different font to distinguish them from characters. We will
construct a token stream as a string over these three types of tokens. For convenience,
we will build them left-to-right rather than right-to-left as we did earlier — this is done
in the same way and we still useε and · as our constructors. We will also useˆ for
token stream concatenation (or splitting).

We will now implement lexing as a series of judgments, that model the way an
actual lexer works, although in a very simplified and specialized way. We can do so in
many ways. We will use two judgments:

t . s lex to t′ Given token prefixt, strings lexes to tokenst′

t .n s lex to t′ Given token prefixt and numbern, strings lexes to tokenst′

The first argument of these judgments is used as an accumulator where tokens are
stored up to the point where the input string has been totally consumed. It is then output
as the third argument. We build a token stream for a concrete strings by attempting to
find a derivation for the judgmentε . s lex to t: if such a derivation exists, then the
objectt built along the way is a token stream fors. Otherwise, no token stream fors
exists.

Although they are mutually recursive, we will now give the defining rules one judg-
ment at a time:

lex ε

t . ε lex to t

t .d s lex to t′
lex d

t . d · s lex to t′

t . s lex to t′
lex

t . · s lex to t′

t ·+ . s lex to t′
lex +

t . + · + · s lex to t′

t · ∗ . s lex to t′
lex ∗

t . * · s lex to t′

Rulelex ε returns the accumulated token stream when the input string is empty. When
seeing a digitd, rulelex d passes it to the second judgment (below), which will convert
it into a number once all of its digits have been collected. Rulelex ignores a space.
Ruleslex + andlex ∗ recognize the strings++ and* respectively and extend the token
stream with the tokens+ and∗ respectively.

t .n′ s lex to t′ n′ = 10× n + d
lex dd

t .n d · s lex to t′

t · num[n] . ε lex to t′

lex dε

t .n ε lex to t′

t · num[n] . s lex to t′

lex d

t .n · s lex to t′

t · num[n] . + · s lex to t′

lex d+

t .n + · s lex to t′

t · num[n] . * · s lex to t′

lex d+

t .n * · s lex to t′

January 19, 2008 5

15-312: Concrete and Abstract Syntax I. Cervesato

The one interesting rule here islex dd, which recognizes an additional digit of a nu-
meric string. Defining rules for the judgment in the right premise is rather simple but
quite tedious. All the other rules simply call the main judgment after adding the token
num[n] to the token stream.

Exercise

Define a syntax for regular expressionsr and give the rules for a judgments matches r
which is derivable only when concrete strings matches regular expressionr. It is
easy to define this judgment non-deterministically by using string concatenation to
split strings at appropriate places. You may want to model a more efficient version
after some of the material you saw in 15-212 (a more general judgment is needed).

Assume you are given token formst ∈ T (for example all the tokens that can appear
in a Java program) and rules implementing a judgments .r t that builds the tokent
out of the strings which matches regular expressionr (assume you already know that
s matchesr; in the example above, one such judgment would build the tokennum[n]
given a string of digitss and the regular expression(0| . . . |9)+ and another would
build + when it sees++), generalize the above judgmentt . s lex to t′ to produce a
stream of these generic tokens.

Parsing

Moving from raw strings to token streams hides a substantial amount of irrelevant
details for the purpose of examining a program as a mathematical object. Parsing
exposes the structure of this flat sequence of tokens as defined by the grammar of the
language. In particular, it turns tokens that are meant to connect other tokens (such as∗
in num[3]·∗·num[4]) into operators applied to arguments (heretimes(num[3], num[4])).
What we obtain as a result of parsing is anabstract syntax tree, often simply called a
term. Programs written in this way are said to be inabstract syntax, as opposed to the
concrete syntaxof what is entered in a computer.

Consider the following example, starting from raw strings:

Raw syntax: “3 *4++ 7 ”wwww�lexing

Token stream: num[3] · ∗ · num[4] ·+ · num[7]wwww�parsing

Abstract syntax tree: plus(times(num[3], num[4]), num[7])

(the raw string has been compacted for clarity, and the trailingε of the token stream
has been dropped.)

The abstract syntax is defined inductively in a way that is coherent with the inter-
pretation of a program or expression (recall that raw strings are also defined inductively,

January 19, 2008 6

15-312: Concrete and Abstract Syntax I. Cervesato

but this definition has nothing to do with the higher-level meaning of a string, rather
with the sequencing of characters). This inductive definition comes directly from the
grammar for its language. For example, the grammar for (tokenized) expressions given
earlier can be automatically transformed into the following inference rules for the judg-
mentt exp, which interprets a token streamt as an expression:

num[n]

num[n] exp

t1 exp t2 exp
plus

t1ˆ+ t̂2 exp

t1 exp t2 exp
times

t1ˆ∗ t̂2 exp

(here, we have taken some liberties: a fully formal definition would rely on the string
splitting judgments as s1 ŝ2 defined earlier, adding one premise to the two rightmost
rules.)

Consider the following derivation for the judgment

num[3] · ∗ · num[4] ·+ · num[7] exp

involving the above example:

num[3]

num[3] exp
num[4]

num[4] exp
times

num[3] · ∗ · num[4] exp
num[7]

num[7] exp
plus

num[3] · ∗ · num[4] ·+ · num[7] exp

This object is a parse tree for this expression, given as a derivation rather than in the
usual way.

Now, the abstract syntax for this expression can be read off directly from this
derivation by simply taking the names of the rules as operators. Indeed, taking the terms
corresponding to the premises of a rule as the argument of this rule’s name viewed as
an operator, we obtain:

plus(times(num[3], num[4]), num[7])

Therefore, the abstract syntax is just a simplified way of writing the parse tree for
a (token) string. Here, we have justified it in terms of derivation. This technique is
completely general, and scales to more complicated forms of abstract syntax.

This yields the following grammar for abstract expressions:

Abstract Expressions: E ::= num[n] | plus(E,E) | times(E,E)

We will generally omit the tagnum.
This techniques is even more general than this: we can read any derivation as a

term (although we often need a little bit more than just the rule names). This is the way
proofs are entered into a theorem prover.

Harper’s book (chapter 5) mentions an alternative way of building abstract syntax
trees: rather than reading them off a parse tree in derivational form, they can be given
an independent definition, and an additional judgment (parsing) is defined to relate
strings (raw or tokenized) and abstract syntax trees. The net effect is the same, as this
construction essentially defines the abstract syntax tree to be isomorphic to the deriva-
tion. This is another general approach — but sometimes error prone — to introducing
terms to describe derivations.

January 19, 2008 7

15-312: Concrete and Abstract Syntax I. Cervesato

Ambiguity

Of course, the above grammar for expressions is ambiguous, and the shown derivation
tree is not the only one for our example (the other one takes∗ to be the main oper-
ator, and therefore would build the termtimes(num[3], plus(num[4], num[7]))). The
ambiguity here derives from the fact that the string concatenation judgments as s1 ŝ2,
implicitly used in rulesplus andtimes, is non-deterministic when used for splittings
into s1 ands2.

There are standard techniques for writing a grammar that ensure that it is non-
ambiguous. Then, there is at most one parse tree (i.e., derivation in the sense above)
in correspondence with any string in the language. See Harper’s book (chapter 5) for a
discussion on this.

Making a grammar non-ambiguous often involves introducing new non-terminals
(which for us means adding judgments) and maybe parentheses. The construction
given above clearly works also in this case, but doing so often carries over disam-
biguating machinery to the abstract syntax, which is not directly useful since the ab-
stract syntax is not ambiguous (by definition). For this reason, the abstract syntax is
generally based on a very simple (but usually ambiguous) grammar for a language.

January 19, 2008 8

