
15-312: Untyped Languages I. Cervesato

15-312 Lecture on
Untyped Languages

Untyped Languages

We concentrate on untyped languages, languages that do not make use of types and
therefore for which there is no static semantics. We will see two of them:

• The untypedλ-calculus is a minimal language of untyped functions. Because
everything is a function there, every closed expression is a well-formed program
that will either evaluate to a value, or fail to terminate. This language is Turing-
complete, which means that any computable function can be written in it, exactly
as C, Java or ML. It is however of purely theoretical interest because of its
extremely low level of abstraction (kind of like programming with bits).

• The untyped PCF is what its name says: PCF without types. Because there are
now two classes of entities (functions and numbers) and there are no types to
sort them out, we must now check at run time that the arguments of an operator
are used consistently (e.g., to prevent taking the successor of a function). These
dynamic checks must be there in any untyped language that has more than one
class of expressions. Untyped PCF is indeed a simplified version of Scheme, one
of the most prominent untyped languages.

The difference between how to use a typed and an untyped language is evident in
figure 1: all the checks that the typechecker does ahead of execution in a typed language
must be performed during evaluation. Therefore, what the typechecker flags as type
errors before evaluation now become run-time errors produced by the evaluator. Note
that one still needs to prove a progress theorem to make sure that evaluation never gets
stuck.

The Untyped Lambda-Calculus

The untypedλ-calculus provides only functions and application:

Untyped expressions u ::= x | lam(x.u) | app(u1, u2)

For clarity, we write operators in our untyped languages using ateletype font and
use the letteru instead ofe for expressions.

February 10, 2008 1

15-312: Untyped Languages I. Cervesato

Program

?

�
�@

@
�

�@
@

Parsing

?

-Yuk!

�
�

��@
@

@@
�

�
��@

@
@@

Typechecking -Yuk!

?

Evaluation

Value

�
�
��

Run-time
error

�
�
�
��

Type
error

.
.
.
.
.
.
.W

Evaluator
stuck

.

.

.

.

.

.

.

.

.

.

.?

Non
termination

A
AAU

Program

?

�
�@

@
�

�@
@

Parsing

?

-Yuk!

Evaluation

Value

�
�
��

Run-time
error

�
�
�
��

More run-
time errors

C
C
C
CW

Evaluator
stuck

.

.

.

.

.

.

.

.

.

.

.?

Non
termination

A
AAU

Typed Execution Untyped Execution

Figure 1: The Evaluation Process for Typed and Untyped Languages

The dynamic semantics of this language is as in the typed case. Chapter 22 of
Harper’s book goes into the details of its surprising expressiveness.

What we will do now is define a translation of the untypedλ-calculus into a typed
functional language. Given an untyped expressionu, we will build an expressione =
puq in this typed language so that if syntactically well formedu, thenpuq is well-typed
of some typeD.

Because the untypedλ-calculus only provides functions,D must be an arrow type,
and since both the argument and the result must be functions (and there is nowhere
to start from), it makes sense to define it as the recursive type of all functions where
domain and range coincide:

D = µt. t → t

This means that our typed language must contain functions and recursion.
With a type in hands, let’s define the translation of the expression in the untyped

λ-calculus. The one constraint that we must maintain is that for everyu, its translation

February 10, 2008 2

15-312: Untyped Languages I. Cervesato

puq has typeD. We obtain:

pxq = x
plam(x.u)q = fold[D](lam(x.puq))
papp(u1, u2)q = app(unfold(pu1q), pu2q)

Let’s convince ourselves that this makes sense:

• All variables will have typeD.

• Let’s look at translation oflam(x.u) and check the types:

fold[D](lam(x︸︷︷︸
D

. puq︸︷︷︸
D

)

︸ ︷︷ ︸
D→D

)

︸ ︷︷ ︸
D

• Finally, let’s look at the translation ofapp(u1, u2):

app(unfold(pu1q︸ ︷︷ ︸
D

)D→D, pu2q︸ ︷︷ ︸
D︸ ︷︷ ︸

)

︸ ︷︷ ︸
D

Untyped PCF

In the untypedλ-calculus, things were easy since we only needed to deal with func-
tions. Let’s introduce numbers and see what happens. If we do so, we obtain for
example an untyped version of PCF. Now things can go wrong, for example if we try
to take the successor of a function. Therefore, we will also introduce an error token.

Untyped expressions u ::= x | lam(x.u) | app(u1, u2)
| fix(x.u)
| num[n] | s(u) | ifz(u, u0, x.un)
| error

Numbers n ::= z | s(n)

Again, operators in the untyped language are written in ateletype font. Here,n
stands for numbers in unary notation.

The dynamic semantics of this languages is as follows:

Values

num(n) val lam(x.u) val

Error

error err

February 10, 2008 3

15-312: Untyped Languages I. Cervesato

Tests

num(n) isnum n lam(x.u) isntnum error isntnum

lam(x.u) isfun x.u num(n) isntfun error isntfun

Transitions

u 7→ u′

s(u) 7→ s(u′)

u isnum n
∗

s(u) 7→ num(sn)

u isntnum
∗

s(u) 7→ error

u 7→ u′

ifz(u, u0, x.un) 7→ ifz(u′, u0, x.un)

u isntnum
∗

ifz(u, u0, x.un) 7→ error

u isnum z
∗

ifz(u, u0, x.un) 7→ u0

u isnum s(n)
∗

ifz(u, u0, x.un) 7→ [n/x]un

u1 7→ u′1

app(u1, u2) 7→ app(u′1, u2)

u1 val u2 7→ u′2

app(u1, u2) 7→ app(u1, u
′
2)

u1 isfun x.u u2 val
∗

app(u1, u2) 7→ [u2/x]u

u1 isntfun u2 val
∗

app(u1, u2) 7→ error

fix(x.u) 7→ [fix(x.u)/x]u

Note that in rules marked with∗ we need to perform a run-time test to make sure that
some operand belongs to the right class before proceeding. If it doesn’t, we produce an
error.

Typed Representation

In the same way that we translated every valid expression in the untypedλ-calculus into
well-typed expressions of typeD in a typed functional language with recursive types,
we will now translate the untyped PCF into an appropriate variant of PCF, making
sure that valid untyped programs are mapped to well-typed PCF expressions, and also
exposing all the tests that get performed during execution as well as the marking that
needs to be done to enable these tests.

Let’s identify our target language. We have two options: go the way of the untyped
λ-calculus and use recursive types, or come up with an ad-hoc extension of PCF that
works fine for our purposes. We will go the second way noting that Harper’s book
shows how to reduce it to the first option (so it is not all that ad-hoc after all).

February 10, 2008 4

15-312: Untyped Languages I. Cervesato

The grammar for this extension of PCF is as follows:

Types τ ::= nat | τ1 → τ2 | dyn
Expressions e ::= x | lam[τ](x.e) | app(e1, e2)

| fix(x.e)
| z | s(e) | ifz(e, e0, x.en)
| error
| g! e | e?g

Tags g ::= num | fun

The extension consists of the typedyn, which will the representation target type of
untyped expressions. The constructor of this type isg! e, whereg is a tag (either
num for numbers orfun for functions). Intuitively,g! e tags expressione with tagg,
supposedly related to the type ofe, and ascribes to it the typedyn. Dually, e?g checks
that the tag ofe matchesg and returnserror otherwise. Since we want to simulate
untyped evaluation, we need to handle errors.

Note also that we cannot build an expression of typedyn without going through the
tagging construct (or assume that a variable has typedyn).

Static Semantics

Standard PCF Rules

Γ, x : τ ` x : τ

Γ, x : τ ` e : τ ′

Γ ` lam[τ](e) : τ → τ ′

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` app(e1, e2) : τ

Γ ` z : nat

Γ ` e : nat

Γ ` s(e) : nat

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` en : τ

Γ ` ifz(e, e0, x.en) : τ

Γ, x : τ ` e : τ

Γ ` fix(x.e) : τ

Additional Rules

Γ ` error : τ

Since an error can arise at any point in the evaluation of an expression,error must be
allowed to have any type if we want type preservation to hold.

Γ ` e : nat

Γ ` num! e : dyn

Γ ` e : dyn → dyn

Γ ` fun! e : dyn

The tagging constructg! e takes an expressione of some definite type, turns it into an
expression of typedyn, but along the way makes a note of the original type in the tag.

Γ ` e : dyn

Γ ` e?num : nat

Γ ` e : dyn

Γ ` e?fun : dyn → dyn

February 10, 2008 5

15-312: Untyped Languages I. Cervesato

By contrast,e?g takes an expression of typedyn and casts it to an expression of a
definite type, again marking what it has done along the way. At evaluation time,e
will be tagged with a tagg′: if g andg′ are the same tag all is fine, otherwise, the
execution will result into an error. Note that the type system does not force tags to
be used consistently: after all, we are trying to model untyped languages, in which all
kinds of wacky expressions can be sent to the evaluator.

Transition Semantics

Values

z val

v val

s(v) val lam(x.e) val

v val

g! v val

Standard PCF Transitions

e 7→ e′

s(e) 7→ s(e′)

e 7→ e′

ifz(e, e0, x.en) 7→ ifz(e′, e0, x.en)

ifz(z, e0, x.en) 7→ e0

n val

ifz(s(n), e0, x.en) 7→ [v/x]en

e1 7→ e′1

app(e1, e2) 7→ app(e′1, e2)

e1 val e2 7→ e′2

app(e1, e2) 7→ app(e1, e
′
2)

e2 val

app(lam[τ]e, e2) 7→ [e2/x]e fix(x.e) 7→ [fix(x.e)/x]e

Additional Transitions

e 7→ e′

g! e 7→ g! e′
e 7→ e′

e?g 7→ e′?g (g! v)?g 7→ v

g 6= g′

(g′! v)?g 7→ error

Both tagging and checking evaluate their argument until possible. When they meet,
the check for a tagg must find an expression with the same tag, otherwise an error
is returned. Note that this is the only place where run-time errors can arise in this
language, i.e., we have isolated the possibility of error in exactly one rule.

Compilation

We will now compile the untyped PCF to the extended PCF just introduced. The in-
variant that we want to maintain is that wheneveru is a valid expression in the untyped

February 10, 2008 6

15-312: Untyped Languages I. Cervesato

language, thene = puq is well-typed of typedyn in the extended PCF.

pxq = x
pnum(n)q = num! n
psq = num! (s(u?num))
pifz(u, u0, x.un)q = ifz(puq?num, pu0q, x′.[num! x′/x]punq)
plam(x.u)q = fun! lam[dyn](x.puq)
papp(u1, u2)q = app(pu1q?fun, pu2q)
pfix(x.u)q = fix(x.puq)

Here, all variables are of typedyn. When compiling the successor of an untyped ex-
pression, we must check that the operand is a number, but we also need to announce
that the result will be a number. Similarly, we need to check that the first argument of
ifz is a number. What is happening about the third argument ofifz is more interesting.
Untyped variables are assigned typedyn, therefore,x will have typedyn. However, the
binder of the third argument ofifz has typenat. Therefore, we need to replacex with a
new variable,x′ of typenat, and tag every occurrence inpunq with num. Every func-
tion is explicitly tagged as such, and every application checks that its first argument is
a function.

It easy easy to convince oneself that ifu is a closed untyped expression, thenpuq
has typedyn. Moreover, this translation is sound and complete in the sense that when-
ever an untyped expressionu evaluates to some untyped valueu′, thenpuq evaluates
to pu′q (soundness), and vice-versa, ife is the extended PCF representation of some
untyped expressionu ande evaluates to a valuev, thenv is the representation of an
untyped valueu′ (completeness).

Lemma 1 (Soundness)If u 7→∗ u′, thenpuq 7→∗ pu′q.

Lemma 2 (Completeness)If puq 7→∗ v and v val, thenv = pu′q for u′ val and
u 7→∗ u′.

Example

We have seen that addition can be defined as follows in PCF:

fix[nat → nat → nat](plus. lam[nat](m. lam[nat](n.
ifz(m,

n,
m′. s(app(app(plus, n),m′))))))

(One can write it in other ways also.)
The untyped version then appears as:

fix(plus. lam(m. lam(n.
ifz(m,

n,
m′. s(app(app(plus, n),m′))))))

February 10, 2008 7

15-312: Untyped Languages I. Cervesato

and translating it to our extended PCF, we obtain:

fix[dyn](plus. fun! lam[dyn](m. fun! lam[dyn](n.
ifz(m?num,

n,
m′. num! s(app(app(plus?fun, n)?fun, num! m′))?num))))

This expression, which just makes explicit what the untyped version does, contains
4 tagging operations and 4 checks. What is even worse, they all occur within the
recursion, which means that on each recursive call, 4 tags are created and 4 are checked.
If use it to compute100 + 100, that’s 400 tags created and 400 tags checked.

It may appear that none of the checks involven. This is the case only ifn is
z: otherwise, the last iteration will make sure thatn is a number before taking its
successor.

Type-Directed Optimization

Having made tag creation and checking explicit in a typed framework provides a way
to correctly transform programs to improve their efficiency. This is called type-directed
optimization and it has been applied in much wider settings than this. We will demon-
strate it on the expression for addition. We will proceed by example rather than through
a rigorous definition of the transformation and its proof of correctness (which could be
done with limited effort).

Let’s examine what all those tag creations and checks actually do. The twofun tag
markings state that the followingλ-abstractions are functions — that sounds obvious!
They are there so that the two checks in the applications succeed. This is inefficient
in a major way because, sinceplus is defined to be a binary function, it will be a
binary function at every recursive invocation. A first optimization is therefore to pull
the tagging of this code as a function out of the recursive call:

fun! fun! fix[dyn → dyn → dyn](plus. lam[dyn](m. lam[dyn](n.
ifz(m?num,

n,
m′. num! s(app(app(plus, n), num! m′))?num))))

Note that the checksplus is a function have been removed from the recursive call, but
any attempt to use this definition to add two numbers will need to rely those checks:
they have been eliminated inside the recursion because it is safe to do so, but we don’t
know about what will happen outside, so they must still be there. One effect of moving
the tagging operations outside the loop is that the type of the recursor is nowdyn →
dyn → dyn.

This looks (and runs) better already! Next,m is checked as a number at every
recursion and its predecessorm′ is tagged as such. This is pointless: ifm is a number,
thenm′ is a number, and it is this verym′ that will be used asm in the next recursive
call. What we would like to do, is to check thatm is a number even before any recursive
call. We can do so by means of an operation calledη-expansion: it says that if we know

February 10, 2008 8

15-312: Untyped Languages I. Cervesato

thate is a function, then it can be expanded aslam(x. app(e, x). By doing so, we can
rewrite our latest version to:

fun! lam[dyn](mη.
app(fun! fix[nat → dyn → dyn](plus. lam[nat](m. lam[dyn](n.

ifz(m,
n,
m′. num! s(app(app(plus, n),m′))?num))),

mη?num))

By η-expanding our function on its first argument, we can check thatm (now renamed
mη for clarity) is a number exactly once. We do not need to play the tag and check
game within the loop. Note that this has the effect of changing the type of the recursive
function fromdyn → dyn → dyn to nat → dyn → dyn. The cast onmη makes sure
that the type of the overall expression is stilldyn → dyn → dyn.

Another apparently pointless tag and check still remains in the “else” branch of the
ifz: as it checks that the recursive calls returns a number, takes its successor, and then
tags it as a number before returning. But the previous recursive call will do the same!
Can we just eliminate both the tagging and the testing? Not quite. At least not quite
this simply: if we remove these operations, the overall type of the “else” branch will
benat, which requires the “then” branch to benat; an easy way to do so is to check
that n is a number. If we do so, we change the semantics of this function since we
saw that, ifm = z, then anything can be given asn, even an expression that is not a
number, and the call will be successful, returningn unaltered. One way to overcome
the recursive tag and test, is to cascade twoifz, the outermost returning values of type
dyn and the inner one doing most of the work computing values of typenat. But that’s
complicated.

What if we knew thatn must be a number? We could thenη-expand it out like we
did for m:

fun! lam[dyn](nη. fun! lam[dyn](mη.
num! app(app(fun! fix[nat → nat → nat](plus. lam[nat](m. lam[nat](n.

ifz(m,
n,
m′. s(app(app(plus, n),m′))))),

nη?num),mη?num))

Note how we changed the type of the recursor fromnat → dyn → dyn tonat → nat →
nat and how we now need to cast the result to a number for whatever computation
uses the result of calling this function. More importantly, observe that the recursive
definition is not only pure PCF code, but it is the very PCF expression we started with.

February 10, 2008 9

