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Abstract
CHR is a declarative, concurrent and committed choice rule-based
constraint programming language. In this paper, we adapt CHR to
provide a decentralized execution model for parallel and distributed
programs. Specifically, we consider an execution model consisting
of an ensemble of computing entities, each with its own constraint
store and each capable of communicating with its neighbors. We
extend CHR into CHRe, in which rules are executed at a loca-
tion and are allowed to access the constraint store of its imme-
diate neighbors. We give an operational semantics for CHRe, de-
noted ωe0 , that defines incremental and asynchronous decentralized
rewriting for the class of CHRe rules characterized by purely local
matching (0-neighbor restricted rules). We show the soundness of
the ωe0 semantics with respect to the abstract CHR semantics. We
then give a safe encoding of the more general 1-neighbor restricted
rules as 0-neighbor restricted rules, and discuss how this encoding
can be generalized to all CHRe programs.

Categories and Subject Descriptors F.3.2 [Theory of Computa-
tion]: Logics and Meanings of Programs—Semantics of Program-
ming Languages

General Terms Languages, Performance, Theory

Keywords Distributed Programming, Constraint Logic Program-
ming, Multiset Rewriting

1. Introduction
In recent years, we have seen many advances in distributed sys-
tems, multicore architectures and cloud computing, drawing more
research interest into better ways to harness and coordinate the
combined power of distributed computation. While this has made
distributed computing resources more readily accessible to main-
stream audiences, the fact remains that implementing distributed
applications that can exploit such resources via traditional dis-
tributed programming methodologies is an extremely difficult task.
As such, finding effective means of programming distributed sys-
tems is more than ever an active and fruitful research and develop-
ment endeavor.
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base : [X]edge(Y,D) =⇒ [X]path(Y,D)
elim : [X]path(Y,D) \ [X]path(Y,D′)⇐⇒ D < D′ | true
trans : [X]edge(Y,D),[Y ]path(Z,D′)

=⇒ X 6= Z | [X]path(Z,D +D′)

Figure 1. Distributed All Shortest Path

In this paper, we propose an extension of the constraint pro-
gramming language CHR [5] (Constraint Handling Rules). The re-
sulting language, which we call CHRe is designed specifically as
a high-level distributed and parallel programming language for de-
veloping applications that operate in a decentralized manner over
an ensemble of distributed computing entities, referred to as loca-
tions. Each CHR rule executes at a location, enabling this location
to read and write data held by its immediate neighbors. Specifi-
cally, we are interested in rules that can read data from up to n
of their immediate neighbors for various values of n, but writes
to any number of neighbors. We call them n-neighbor restricted
rules. Such n-neighbor restricted rules are a generalization of link
restriction [1, 8] adapted to the context of multiset rewriting. This
gives us a highly expressive model for programming complex be-
haviors involving distributed ensembles in a declarative and con-
current manner.

Figure 1 shows an example CHRe program that contains three
CHR rules. This program computes all shortest paths of a graph
in a distributed manner. An edge of length D from a location X
to Y is represented by a constraint edge(Y ,D) found in X’s con-
straint store, written [X]edge(Y,D). Similarly [X]path(Y,D)
expresses a path of length D from X to Y . The location of a con-
straint is modeled by the [l] operator that prefixes all constraints
in the CHR rules. The rules base and elim are 0-neighbor re-
stricted rules because their left-hand sides involve constraints from
exactly one location, X . Rule trans is a 1-neighbor restricted rule
since its left-hand side involves X and a neighbor Y . We desig-
nate X as the primary location of this CHR rule because it refer-
ences Y in an argument (here, [X]edge(Y,D)). This means that
Y is a topological neighbor of X1. Neighbor restriction brings as-
pects of the topology of the ensemble (X has an edge to Y ) in
the CHR rules. Rule base adds path(Y,D) at location X for ev-
ery instance of constraint edge(Y,D) at the same location. Rule
elim looks for any instances of a pair of constraints, path(Y,D)
and path(Y,D′) involving the same location Y at location X and
removes the longer of the two path (path(Y,D′) for D < D′).
Rule trans adds path(Z,D +D′) at location X whenever there
is edge(Y,D) at location X and a matching path(Z,D′) at loca-
tion Y for X 6= Z. This program is declarative because the pro-

1 Any location reference Y that appears as an argument of a constraint at
location X is considered a neighbor of X . This is how neighbor restriction
enforces topological information to be embedded in predicates.



grammer focuses on which distributed computations to synchro-
nize (e.g., [X]edge(Y,D), [Y ]path(Z,D′)) to produce what re-
sults ([X]path(Z,D + D′)), rather than how synchronization is
achieved. It is concurrent because while a CHR rule applies to a
fragment of the ensemble, many other rewritings can occur asyn-
chronously in the rest of the ensemble.

In this paper, we present CHRe, a distributed programming lan-
guage that extends CHR with located constraints and n-neighbor
restricted rules, a generalized notion of link-restriction [8]. We
define an abstract semantics of CHRe, written ωeα, and prove its
soundness with respect to the standard semantics of CHR. Follow-
ing this, we extend the original CHR refined operational seman-
tics [3] to support decentralized incremental multiset matching for
0-neighbor restricted rules, obtaining the ωe0 operational semantics,
and prove its soundness and the exhaustiveness of rule application,
with respect to the ωeα semantics. We then give an optimized encod-
ing of 1-neighbor restricted rules into 0-neighbor restricted rules of
ωe0 , prove the soundness of this encoding. Following this, we briefly
discuss the generalization of this encoding to n-neighbor restricted
rules.

The main contributions in this paper are as follows:

• We present CHRe, a distributed programming language that ex-
tends CHR with located constraints and n-neighbor restricted
rules, a generalized notion of link-restriction [8] in the context
of multiset rewriting.
• We define the ωeα abstract semantics of CHRe and prove its

soundness with respect to the CHR abstract semantics.
• We present the ωe0 operational semantics (based on the refined

CHR operational semantics [3]) that supports decentralized in-
cremental multiset matching for 0-neighbor restricted rules. We
prove its soundness with respect to the ωeα abstract semantics.
• We give an optimized encoding of 1-neighbor restricted rules in
ωe0 and prove the soundness of this encoding.

The rest of this paper is organized as follows: We review re-
lated work in Section 2. Section 3 recalls notions used in this paper
and the traditional CHR language. Section 4 defines the CHRe lan-
guage while Section 5 presents two examples of programming in
CHRe. Section 6 gives the ωeα abstract semantics, the ωe0 opera-
tional semantics and relates them. Section 7 encodes 1-neighbor
restricted rules into ωe0 . In Section 8, we outline encoding of the
full CHRe language (n-neighbor restricted rules) into ωe0 . We con-
clude in Section 9. Details of the generalized encoding, as well as
proofs of all lemmas and theorems in this paper can be found in the
extended technical report [6].

2. Related Works
An extension of Datalog for implementing network protocols is in-
troduced in [8]. It defines link restricted Datalog rules along with
the idea of rule localization which encodes link restricted rules
into local Datalog rules. Our work adapts, expands and generalizes
these ideas to the context of distributed multiset rewriting. A dis-
tributed and incremental algorithm for computing rule matchings
involved in such distributed Datalog systems is presented in [10]
and is analogous to what ωe0 provides in the context of distributed
multiset rewriting. Our work draws inspiration from the program-
ming language Meld [1]. Meld introduces a multitude of exten-
sions to Datalog, including linearity, aggregates and comprehen-
sions. Work in [2] adapts Meld for the context of general purpose
multicore parallel programming. The current implementation of
Meld does not exploit the incremental nature of multiset match-
ing2, hence our work on ωe0 can be adapted as an alternative opera-
tional semantics for Meld that does that. The ωe0 semantics extends

2 Rule matchings are re-computed after application of a rule instance.

the refined CHR operational semantics [3]. Our work shares some
similarities with works on parallel compilations of CHR [7, 15],
but differs in that we focus on explicitly distributing the constraint
store.

3. Preliminaries
In this section, we present the notations that will be used throughout
this paper. We also give a brief introduction to the abstract CHR
language and its semantics.

Let o be a generic syntactic construct or runtime object of our
language. We write ō for a multiset of objects o and ~o for a sequence
of objects o. Relying on these notational accents for disambigua-
tion, we write ‘,’ to represent both multiset union and sequence
concatenation, with ∅ as the identity element. For instance, ‘o, ō’
is a multiset while ‘o, ~o’ is a sequence (the former is commutative
while the latter is not). A set is treated as a multiset with single
occurrences of each element. We use standard notations for sets:
ō1 ∪ ō2 for union, o ∈ ō for membership, and ō1 ⊆ ō2 for subset.
Given a set I of labels, we write

⊎
i∈Ioi to denote the multiset of

objects oi, for i ∈ I.
The substitution of all occurrences of variable x in o with the

term expression t is denoted as [t/x]o. It is inductively defined on
all syntactic constructs and runtime objects o in the usual manner.
We assume that substitution is capture-avoiding and rely on implicit
α-renaming. Given a sequence of terms ~t and a sequence of vari-
ables ~x, we write [~t/~x]o as the simultaneous substitution of each
variable in ~x with the corresponding term in ~t. We will use this no-
tion with sets as well (i.e., t̄ and x̄). We write FV(o) for the set
of free-variables in o and say that o is ground if FV(o) = ∅. We
write meta level operators in upright font (e.g., FV(−)) and CHR
constraint predicates in italics (e.g., edge , path).

Figure 2 illustrates the abstract syntax of CHR. CHR is a high-
level multiset rewriting language built on top of a term language.
As done traditionally [5], we will keep this term language mostly
abstract but with some basic assumptions: We assume that it has
variables and that each term t has a normal form, denoted NF(t).
Well-formed term expressions can contain pure function applica-
tions3 which we assume will evaluate to normal form terms (via
NF(t)). A rule guard G is a set of relations among term ex-
pressions, called built-in constraints. We assume that built-in con-
straints contain equality. The judgment |= G decides the validity of
ground built-in constraint G.

A CHR constraint p(~t) is a first-order predicate symbol p ap-
plied to a sequence of terms ~t. A CHR rule is of the form r :
P \ S ⇐⇒ G | B where r is a unique name, P , S and B
are multisets of CHR constraints and G is a set of built-in con-
straints. Each CHR rule specifies a rewriting that can occur over
fragments of a multiset of constraints, known as the CHR store.
Specifically, a rule like this states that we can replace any match-
ing instance of ‘P, S’ in the CHR store with the corresponding
instance of B, if G is valid when applied to the matching substi-
tution (|= θG). We will refer to P and S as the propagate and
simplify rule heads, G as the rule guard and B as the rule body.
This general form of CHR rule is known as a simpagation rule.
The short-hands r : P =⇒ G | B and r : S ⇐⇒ G | B,
known as propagation and simplification rules, have empty simpli-
fied and propagated rule heads respectively. We will omit the rule
guard component if it is empty as well. We take a few benign de-
viations from traditional treatments of CHR (e.g., [5]): we require
that all constraints in a CHR store be ground and that built-in con-
straints only appear in the guards G. This allows us to focus on the
distributed multiset rewriting problem in this paper and set aside
features like explicit built-in constraints as orthogonal extensions.
Also, a rule body B can be prefixed by zero or more existential

3 In Section 5, we will define these term functions when required.



Variables x Values v Predicate names p Rule names r Rule guard G

Term t ::= x | v | ...
Constraint c ::= p(~t)
Rule Heads H ::= · | c,H
Rule Body B ::= ∃x̄. D
Rule Body Elements D ::= true | c,D

CHR Rule R ::= r : H \H ⇐⇒ G | B
Program P ::= R | R P
Store S̄ ::= ∅ | S̄, c

r : P ′ \ S′ ⇐⇒ G | B ∈ P |= θG P = θP ′ S = θS′

P B (S̄, P, S) 7→ωα (S̄, P,NF(Inst(θB)))

Figure 2. Constraint Handling Rules, Language and Semantics

variable declarations (∃x̄). Such variables, which do not appear in
the scope of the rule heads, are instantiated to new constants (that
do not appear in the store) during rule application, allowing the
creation of new destinations in destination passing-style program-
ming [11]. For a rule body ∃x̄. D such that x̄ is an empty set, we
simply write it as D. A CHR rule r : P \ S ⇐⇒ G | B is well-
formed if rule guards and rule body are grounded by the rule heads
(FV(G) ∪ FV(B) ⊆ FV(P ) ∪ FV(S)4) and all term expressions
that appear in the rule are well-formed. A CHR program P is well-
formed if all CHR rules in P are well-formed and have a unique
rule name. A CHR store S̄ is a multiset of constraints. It is well-
formed if FV(S̄) = ∅ and all terms that appear in constraints are
well-formed.

We inductively extend the normalization function to rule bodies.
Given a rule body that contains no existentials D, NF(D) denotes
the normalized rule body with all term expressions in D in normal
form. Since this operation only applies to rule bodies that contain
no existentials, we define a complementary meta operator that in-
stantiates existential variables to fresh constants: Given a rule body
∃x̄.D, Inst(∃x̄.D) denotes an instance of D such that each exis-
tential variable x̄ that appear in D is replaced by a fresh constant
a.

Figure 2 also shows the abstract semantics ωα of CHR. It
defines the transitions of well-formed CHR stores via the derivation
step P B S̄ 7→ωα S̄ ′ for a given well-formed CHR program
P . A derivation step models the application of a CHR rule: it
checks that rule heads P ′ and S′ match fragments P and S of the
store under a matching substitution θ and that the corresponding
instance of guard G is valid (|= θG), resulting to the rewrite
of S with θB with existential variables instantiated and then all
term expressions evaluated to normal form (i.e., NF(Inst(θB))).
Derivation steps preserve the well-formedness of constraint stores.
We denote the reflexive and transitive application of derivation
steps as P B S̄ 7→∗ωα S̄

′. A CHR store S̄ is terminal for P if
no derivation steps of ωα applies in S̄.

While the semantics in Figure 2 models CHR rewritings ab-
stractly, actual CHR implementations implement some variant of
the refined operational semantics [3]. This semantics computes new
matches incrementally from newly added constraints. Additionally,
rule heads are implicitly ordered by an occurrence index (typically
in textual order of appearance) and matches are attempted in that
order, thus providing programmatic idioms that assume a textual
ordering of rule application. More details of these will be provided
in Section 6.2.

4. The CHRe Language
In this section, we introduce the CHRe language. CHRe extends
CHR in several ways and here we focus on the syntactic ramifica-
tions of these extensions. Locations l in CHRe rewriting rules are

4 Recall that the existential variables are not free.

name annotations to a CHR constraint c, written as [l]c and read as
‘c is located at l’. We call [l] the localization operator. Locations
can be variables and in this case are subjected to substitution and
other free variable meta operations as if they were an additional ar-
gument in constraints. Operationally, [l]c indicates that constraint
c is held at location l (details in Section 6.2). Figure 3 shows the
abstract syntax of CHRe rules and programs. All constraints in a
rule are now explicitly localized by the operator [l]. A localization
operator in a rule head indicates the location where the constraint
is to be matched, while a localization operator in a rule body indi-
cates the location where that constraint is to be delivered. We call
the former locations matching locations of the rule while the latter
are forwarding locations.

CHRe rules and programs are well-formed similarly to CHR
rules and programs. Like all variables, location variables of rule
bodies must appear as term arguments or localization operators
of rule heads, or otherwise be existentially quantified. These “ex-
istential locations” represent new locations to be created during
rule application and allows the specification of dynamically grow-
ing ensembles. We will only consider well-formed CHRe rules
from now on. Given a multiset of located constraints H , Locs(H)
denotes the set of locations that appear in the localization oper-
ators of H (e.g., Locs([X]a(Y,Z),[Y ]b(Z, 2)) = {X,Y })
and Args(H) denotes the set of all term arguments of con-
straints inH (e.g., Args([X]a(Y,Z),[Y ]b(Z, 2)) = {Y,Z, 2}).
We write H|l for the location restriction on H , which denotes
the multiset of all constraints in H that is located at l (e.g.,
([X]a(Y,Z),[Y ]b(Z, 2))|X = a(Y,Z)). We write [l]H for
the multiset of all constraints in H each prefixed with [l].

Link restriction in distributed rule based languages [2, 8] con-
strains how locations are used. We generalize it to the notion of
n-neighbor restriction. A CHRe rule r : P \ S ⇐⇒ G | B is
n-neighbor restricted (where n = |Locs(P, S)| − 1) if we can
select l ∈ Locs(P, S) such that it is directly connected to each
other n locations that appear in the rule heads. Furthermore, rule
heads of locations other than l are isolated in that they do not con-
tain common variables that do not appear at l. Rule guards also
need to be isolated in a manner such that each atomic rule guard
is grounded by the rule heads of location l and at most one other
location of the rule head. Such a matching location l is called the
primary location of the n-neighbor restricted rule, while all other
matching locations of the rule are called neighbor locations. We
assume that rule guards G have no side-effects and hence are pure
boolean assertions. Formally, a CHRe rule r : P \ S ⇐⇒ G | B
is n-neighbor restricted (for n = |Locs(P, S)| − 1) if there ex-
ists l ∈ Locs(P, S) such that the following three conditions are
satisfied:

• Directly connected: Locs(P, S) ⊆ {l} ∪Args((P, S)|l)

• Neighbor isolated rule heads: For all other distinct l′, l′′ ∈
Locs(P, S), for each x ∈ FV((P, S)|l′ , (P, S)|l′′), we have
x ∈ FV((P, S)|l).



Location names k

Location l ::= x | k
CHR Rule R ::= r : H \H ⇐⇒ G | B
Program P ::= R | R P

Rule Heads H ::= · | [l]c,H
Rule Body B ::= ∃x̄.D
Rule Body Elements D ::= true | [l]c,D

Figure 3. Abstract syntax of CHRe

• Neighbor isolated rule guards: For each guard condition g ∈
G, either we have FV(g) ⊆ FV((P, S)|l) or for some
other l′ ∈ Locs(P, S), we have FV(g) ∈ (FV((P, S)|l) ∪
FV((P, S)|l′)).

n-neighbor restricted rules characterizes multiset rewritings
across constraint stores of n + 1 connected locations in a ‘star’
topology with the primary location in the center, directly connected
to each n neighbors. The neighbor isolation conditions (for rule
heads and guards) are defined so as to make the matching problem
decomposable into partial match problems between the primary
location l and each of its n-neighbors separately (details in Sec-
tion 8). In general, an n-neighbor restricted rule is of the following
form:

r:
(⊎

i∈In[ki]Pi
)
\
(⊎

i∈In[ki]Si
)
⇐⇒ G |

∃x̄.
(⊎

i∈In[ki]Di
)
,
(⊎

j∈Im[kj]Dj

)
,
(⊎

l∈Ie[kl]Dl

)
where for i ∈ In, kj are matching locations, and j ∈ Im such

that kj ∈
(

FV(
⊎
i∈InPi) ∪ FV(

⊎
i∈InSi)

)
are non-matched

forwarding locations, and l ∈ Ie such that kl ∈ x̄ are existential
forwarding locations.

The matching locations of the rule r are the set of locations
ki labeled by i ∈ In. These are the locations that will be in-
volved in rule matching and correspond to the set of locations
Locs(

(⊎
i∈In[ki]Pi, [ki]Si

)
). We call each “Pi, Si” belonging

to a location ki the matching obligations of ki and assume that
each location ki has a non-empty matching obligation (i.e., either
Pi 6= ∅ or Si 6= ∅). All locations that appear in localization op-
erators of the right-hand side of rule r are called forwarding lo-
cations. We classify them into three types: first we have matched
forwarding locations in the rule body

(⊎
i∈In[ki]Di

)
are such

that each ki is a matching location as well. Next, non-matched for-
warding locations within

(⊎
j∈Im[kj]Dj

)
are such that kj is not

a matching location, but appear as a term argument of some con-
straint in the rule head5. Finally, existential forwarding locations
within

(⊎
l∈Ie[kl]Dl

)
are such that kl ∈ x̄, the set of existen-

tial variables. Note that this implicitly means that kl neither is a
matching location nor appear as a term argument of a rule head,
hence it is a reference to a new location. We assume that the body
of matched forwarding locations (i.e., Di) may be empty but that
of non-matched and existential forwarding locations must be non-
empty (i.e., Dj and Dl). This assumption provide a more con-
cise notation for n-neighbor restricted rules without superfluous
references to locations that are not involved in the rule applica-
tion6. We will refer to a n-neighbor restricted program as a gen-
eral CHRe program, or simply a CHRe program. A well-formed
CHRe rule where heads are located at exactly one location are,
by definition, 0-neighbor restricted. We call these local rules. A

5 The directly connected condition of neighbor restriction dictates that the
primary matching location would possess one such constraint.
6 A matched forwarding location ki is allowed to have an empty rule body
Di because its presence is justified by its appearance as a matching location.

r split : [X]unsorted(Xs) ⇐⇒ len(Xs) ≥ 2 | ∃Y, Z.
[Y ]parent(X ), [Y ]unsorted(takeHalf(Xs)),
[Z]parent(X ), [Z]unsorted(dropHalf(Xs))

r base : [X]unsorted(Xs)⇐⇒ len(Xs) < 2 | [X]sorted(Xs)

r ret : [Y ]sorted(Xs), [Y ]parent(X )⇐⇒ [X]unmerged(Xs)

r merge : [X]unmerged(Xs1 ), [X]unmerged(Xs2 )
⇐⇒ [X]sorted(merge(Xs1 ,Xs2 ))

Figure 4. Parallel Mergesort in CHRe

CHRe program P is n-neighbor restricted if each rule in P are
m-neighbor restricted for m ≤ n.

As an example, consider the example program in Figure 1.
Rules base and elim are examples of 0-neighbor restricted rules
or local rules. This is because the each have rule heads that specify
constraints from a single location. Rule trans however, has rule
heads from two distinct locationsX and Y . Specifically, rule heads
P = [X]edge(Y,D), [Y ]path(Z,D′) and S = ∅, satisfying the
directly connected condition because we have edge(Y,D) located
at X , while satisfying the neighbor isolation condition by default
because the rule only has one neighboring matching location Y .
Hence it is a 1-neighbor restricted rule. An interested observation
is that the 1-neighbor restriction corresponds directly to the link
restriction of [2, 8].

5. Parallel and Distributed Programming in
CHRe

In this section, we briefly discuss some practical examples of par-
allel and distributed programming in CHRe. In the examples here,
we will rely on term level functions to implement sequential sub-
routines (e.g., splitting a list, retrieve element, length of list, etc..)
while higher level rewriting semantics of CHR rules concisely
describes synchronization between locations. For clarity, we will
write constraint predicate in math font, while term functions in
normal font.

Figure 4 shows a parallel implementation of mergesort in
CHRe. We assume that we have four term functions defined as
part of the built-in term language: namely len(Xs) that returns the
length of list Xs , takeHalf(Xs) and dropHalf(Xs) that returns
the first and second half of Xs , and merge(Xs1 ,Xs2 ) that merges
Xs1 and Xs2 into a single sorted list7. Assume that, initially, we
have the constraint unsorted(Xs) at some location X , where Xs
is the list to be sorted. For a non-empty and non-singleton Xs ,
the r split rule splits a unsorted(Xs) constraint into two halves
(unsorted(takeHalf(Xs)) and unsorted(dropHalf(Xs))) and
creates two new location Y and Z, each containing the respective
halves. X will be designated as the parent of Y and Z, repre-
sented by the constraints [Y ]parent(X ) and [Z]parent(X ).
The r base rule rewrites unsorted(Xs) to sorted(Xs) if Xs
is a singleton or empty list, while r ret states the rewriting of

7 In essence, this is the style of distributed programming which we advocate,
where term expressions describe sequential operations while synchroniza-
tion and concurrency is handled at the multiset rewriting level.



r local : [X]unsorted(Xs)⇐⇒ [X]sorted(sort(Xs))

r done : [X]leader(), [X]leaderLinks([ ])⇐⇒ true

r bcast : [X]sorted(Xs), [X]leader() \ [X]leaderLinks(G)⇐⇒
[X]leaderLinks(takeHalf(G)),
[elemAt(len(Xs)/2 ,G)]leader(),
[elemAt(len(Xs)/2 ,G)]leaderLinks(dropHalf(G)),
[X]bcastMedian(elemAt(len(Xs)/2 ,Xs),G)
[X]bcastPartners(takeHalf(G), dropHalf(G))

r bcastM1 : [X]bcastMedian( , [ ])⇐⇒ true

r bcastM2 : [X]bcastMedian(M ,Y : Ys)⇐⇒
[Y ]median(M ), [X]bcastMedian(M ,Ys)

r bcastP1 : [X]bcastPartners([ ], [ ])⇐⇒ true

r bcastP2 : [X]bcastPartners(Y : Ys,Z : Zs)⇐⇒
[Y ]partnerLink(Z ), [X]bcastPartners(Ys,Zs)

r part : [X]median(M ), [X]sorted(Xs)⇐⇒
[X]leqM (filterLeq(M ,Xs)), [X]grM (filterGr(M ,Xs))

r swap : [X]partnerLink(Y ), [X]grM (Xs), [Y ]leqM (Ys)⇐⇒
[X]leqM (Ys), [Y ]grM (Xs)

r leq : [X]leqM (Ls1 ), [X]leqM (Ls2 )⇐⇒
[X]sorted(merge(Ls1 ,Ls2 ))

r gr : [X]grM (Gs1 ), [X]grM (Gs2 )⇐⇒
[X]sorted(merge(Gs1 ,Gs2 ))

Figure 5. Distributed Hyper Quicksort in CHRe

sorted(Xs) at location Y to unmerged(Xs) at the parent of Y
(indicated by [Y ]parent(X)). Finally, r merge rule states that
constraints merged(Xs1 ) and merged(Xs2 ) located at the same
location X is rewritten to sorted(merge(Xs1 ,Xs2 )).

Note this implementation is ‘parallel’ because we assume a
tightly coupled concurrent execution: While each created location
sorts a separate fragment of the list, the ‘split’ and ‘merge’ steps
(r split and r merge rules) ‘moves’ each element of the original
list Xs across log n locations. Depending on the underlying ar-
chitecture, new locations created by existential quantification (e.g.,
in r split rule) may or may not be mapped to new physical net-
work locations. For example, in a multicore system, they could be
mapped to processes to be executed by a pool of local computing
entities operating over a shared memory space.

We now consider another sorting algorithm which is more
suitable for a distributed context. Figure 5 shows an implemen-
tation of distributed hyper quicksort [12]. Hyper quicksort is a
‘distributed’ sorting algorithm because it assumes that we have
m lists of integers distributed between m locations to be glob-
ally sorted and that it is not practical to consolidate all lists into
one centralized location. In addition to the four term functions
introduced earlier, we assume we have the following: sort(Xs)
sequentially sorts Xs , elemAt(I,Xs) returns the Ith element of
Xs , filterLeq(M,Xs) and filterGr(M,Xs) returns list of all el-
ements in Xs less than equal and greater than M respectively.
Initially, each constraint store begins with an unsorted(Xs) con-
straint (Xs contains the list unique to that location) and exactly
one location is nominated the leader by having the additional con-
straints leader() and leaderLink(G) such that G contains the list
of all location identifiers. The algorithm begins by locally sort-
ing each list, using sort(Xs) called by the rule r local . The rule
r done states that if we have leaderLink(G) such that G is a sin-
gleton, sorting is done and we can remove the leader constraints.
The rule r bcast states that for a leader location X , given that
we have sorted(Xs) at X , we split all locations in G into two
halves Lg = takeHalf(G) and Gg = dropHalf(G). X will re-
main the leader of Lg while first element of Gg is designated as the

leader of Gg (i.e., [elemAt(len(Xs)/2, G)]leader()). Next, the
median element of Xs (M = elemAt(len(Xs)/2,Xs)) is broad-
cast to each location in G (modeled by [X]bcastMedian(M,G)
and the r bcastM1 and r bcastM2 rules). Finally, each loca-
tion in Lg is assigned a unique partner in Gg (modeled by
[X]bcastPartners(Lg ,Gg) and the r bcastP1 and r bcastP2
rules). The rule r part states that, given median M , we partition a
sorted list Xs into elements less than M (leqM (Ls)) and elements
greater than M (grM (Gs)). Rule r swap states that a location X
with partnerLink(Y ) swaps with Y its elements greater than M
(grM (Xs)) for Y ’s elements less than M (leqM (Ys)). Rules r leq
and r gr finally merges pairs of leqM and grM constraints into
one sorted constraint.

All rules except for r swap are 0-neighbor restricted, hence
rewritings of such rules are local. Rule r swap is 1-neighbor re-
stricted, hence require synchronization between two locations. The
purpose of assigning partners in the rule r bcast (i.e.,
[X]bcastPartners(Lg ,Gg)) is such that we can write r swap
as 1-neighbor restricted. Hence synchronization does not involve
arbitral locations, rather a location P is bound to only synchro-
nizing with a location Q (via neighbor restriction satisfied by
[P]partnerLink(Q)).

An interesting observation is that in place of the r local rule,
we can instead insert the parallel mergesort rules of Figure 4 into
the example of Figure 5. This makes the sorting within each loca-
tion locally execute in “parallel” (suppose each initial location is a
multicore processor and r split rule “creates” new processes as op-
pose to new physical locations). This demonstrates how CHRe can
provide an abstraction that blends together parallel and distributed
programming.

6. Semantics of CHRe

We define the ωeα abstract semantics of CHRe in Section 6.1,
which introduces a decentralized execution of CHRe programs, and
prove its soundness with respect to the ωα semantics. Using ωeα
as a stepping stone, Section 6.2 defines and proves the soundness
of the ωe0 operational semantics that provides a more operational
view of decentralized execution of CHRe programs. Although this
operational semantics only supports 0-neighbor restricted rules,
Section 7 will show how we encode the arbitral CHRe programs
into 0-neighbor restricted programs. Note that in this work, we
assume a lossless network, meaning that communication between
locations are always eventually delivered and never lost.

6.1 ωeα Abstract Semantics
In this section, we introduce ωeα, an abstract decentralized seman-
tics for CHRe. This semantics accounts for the distributed nature of
CHRe, where each location has its own constraint store. This ab-
stract semantics models a state transition system between abstract
ensemble states, which are multisets of local stores 〈S̄〉k where S̄
is a constraint store and k a location name. An abstract ensemble
states A is well-formed if all constraint stores S̄ that appear in it
are well-formed and location names k are unique.

Figure 6 shows the ωeα semantics. Given a CHRe program P ,
we write a derivation step of ωeα as P B A 7→ωeα

A′ for abstract
states A,A′. A derivation step defines the application of an n-
neighbor restricted rules: Each of the n+ 1 locations ki for i ∈ In
provides a partial match Pi and Si in their respective stores to their
respective matching obligations (i.e., P ′i and S′i), resulting in the
combined substitution θ. If guard θG is valid, we apply the rule
instance by removing Si from the respective store of matching
location ki and replace them with the respective normalized rule
body fragment (Di of matching location ki). For non-matching
forwarding locations kj for j ∈ Im, we simply add rule body
fragment Dj to their stores. Finally, for existential forwarding
locations, we create new location names kl that contains just the
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Figure 6. ωeα Abstract Semantics of CHRe

Ensembles VA, 〈S̄〉kW = VAW, VS̄Wk V∅W = ∅
CHR Program VR PW = VRW VPW V·W = ·

CHR Rule Vr : P \ S ⇐⇒ G | BW
= r : VPW \ VSW⇐⇒ G | VBW

Constraints Vp(~t)Wl = p(l,~t)

Stores
{

Vc, S̄Wl = VcWl, VS̄Wl

V∅Wl = ∅

Body


V∃x̄. DW = ∃x̄.VDW
V[l]c,DW = VcWl, VDW
VtrueW = true

Head
{

V[l]c, HW = VcWl, VHW
V·W = ·

Figure 7. CHR Interpretation of CHRe

rule body fragments Dl8. Since we assume that rule guards G have
no side effects, |= θG is a global assertion. Note that 0-neighbor
restriction is the special case where matching is localized (In is a
singleton set). We denote the reflexive and transitive application of
derivation steps by P B A 7→∗ωeα A

′. ωeα derivation steps preserve
the well-formedness of statesA, provided that CHRe programs are
well-formed (proven in [6]).

From here on, we will implicitly assume the well-formedness of
P , A and A′, when writing P BA 7→∗ωeα A

′.
We now relate the CHRe abstract semantics ωeα to the CHR

abstract semantics ωα. Figure 7 defines a function V−W that in-
ductively traverses the structure of a CHRe syntactic construct and
translates it into a CHR construct that represents its CHR interpre-
tation. For a CHRe rule, this function translates located constraints
[l]p(~t) to standard CHR constraints by inserting location l as the
first (leftmost) term argument of the predicate (i.e., p(l,~t)). We call
these location interpreted CHR constraints. An abstract ensemble
state A is interpreted in CHR simply by collapsing all constraint
stores inA into a single global constraint store, containing location
interpreted CHR constraints. The translation function is defined so
that given a well-formed CHRe syntactic object o, VoW is a well-
formed syntactic object of CHR.

8 New location names are implicitly created by the instantiation of existen-
tial variables (i.e., Inst(−)) applied to the rule body after substitution θ is
applied.

Theorem 1 states the soundness of ωeα, namely the translation
function V−W preserves deriviability.

THEOREM 1 (Soundness of ωeα). Given a CHRe program P and
abstract states A and A′, if P B A 7→∗ωeα A

′, then VPW B
VAW 7→∗ωα VA′W.

6.2 ωe0 Operational Semantics
This section introduces the operational semantics ωe0 . Similarly to
ωeα, this semantics specifies a distributed execution for CHRe pro-
grams. Unlike ωeα, it is operational in that it describes the execution
of CHRe programs in a procedural manner with a clear and concise
execution strategy for each location of the ensemble. As such, it
comprises more derivation rules, each of which is dedicated to a
specific sub-task of decentralized multiset rewriting. The ωe0 se-
mantics is an extension of the refined CHR operational semantics
[3], adapted to describe an execution model for decentralized and
incremental multiset matching9. As such, it shares many meta con-
structs with the refined CHR operational semantics (e.g., rule head
occurrence index, goals, numbered constraints, history). We refer
the interested reader to [3] for a more detailed treatment of the re-
fined operational semantics of CHR. The ωe0 semantics applies only
to 0-neighbor restricted rules. While we could easily have included
n-neighbor restricted rule execution as a derivation step of ωe0 , do-
ing so would not capture the operational challenges of synchroniz-
ing multiple locations during rule application. Instead we compile
n-neighbor restricted rules for n > 1 into 0-neighbor restricted
rules in Section 7.

Figure 8 defines the states of the ωe0 semantics. An ωe0 ensemble
Ω is a set of tuples of the form 〈~U ; ~G ; S̄ ; H̄〉k which represent
the state of the computing entity at location k. The buffer ~U is a
sequence of the constraints that have been sent to location k. The
goals ~G is a sequence of the constraints c or active constraints c#d :
i. The numbered store S̄ is a multiset of numbered constraints c#d.
The index d serves as a reference link between c#d in the store
and an active constraint c#d : i in the goals. The history H̄ is
a set of indices where each element is a unique set of constraint
ids ( ~D). Note the use of accents to explicitly indicate the nature
of each collection of objects. Buffers is a novel extension of this
semantics while goals, numbered store and history are artifacts of
the refined operational semantics of CHR. Also, like the refined
operational semantics of CHR, we assume that each rule head in a
CHR program have a unique rule occurrence index i, representing

9 It is incremental in that multiset matches are processed incrementally from
new information (constraints). This is a property that is crucial for any
effective execution model for distributed rule-based systems.



Stored constraint id d Rule Occurrence Index i

Goals g ::= b | c | c#d : i

Ids ~D ::= ∅ | d, ~D
Buffers ~U ::= ∅ | c, ~U

Goals ~G ::= ∅ | g, ~G
Numbered Store S̄ ::= ∅ | S̄, c#d
History H̄ ::= ∅ | H̄, ( ~D)

Operational Ensembles Ω ::= ∅ | Ω, 〈~U ; ~G ; S̄ ; H̄〉k

Figure 8. ωe0 Ensemble States

the sequence (typically textual order of appearance) in which the
rule head is matched to an active constraint. We write occurrence
index i as a subscript of the rule head (i.e., [l]ci). A state Ω is well-
formed if each 〈~U ; ~G ; S̄ ; H̄〉k ∈ Ω has a unique location name
k, all objects in ~U , ~G and S̄ are ground and all term expressions
that appear in them are well-formed. Furthermore we require that
the goals ~G has at most one active constraint (c#d : i) found at
the head of ~G with a corresponding c#d found in the store S̄. Ω is
initial if all ~U = ∅, S̄ = ∅ and H̄ = ∅ and terminal if all ~U = ∅
and ~G = ∅. We extend the meta operation Locs(−) to the domain
of operational states Ω, namely that Locs(Ω) returns the set of all
locations k that appear in Ω.

We define three meta operations that will be used in the ωe0
semantics: Given a CHR numbered store S̄, DropIds(S̄) returns
the multiset of all constraints in S̄ without their numbered ids;
Ids(S̄) returns the set of all constraint ids that appear in S̄; given
a CHR program P , OccIds(P) returns the set of all rule head
occurrence indices that appear in each rule R ∈ P .

Figure 9 defines the ωe0 operational semantics. Given a 0-
neighbor restricted CHRe program P , a ωe0 derivation step ex-
presses a transition between ensemble states, written P B Ω 7→ωe0

Ω′. Execution in a location 〈~U ; ~G ; S̄ ; H̄〉k ∈ Ω is mainly driven
by the goals ~G which function as a stack of procedures waiting
to be executed. By contrast ~U buffers the constraints sent to the
location. The (Flush) step states that constraints in a non-empty
buffer ~U are to be moved into the goals if the current goal is empty.
(Loc 1), (Loc 2) and (Loc 3) model the delivery of body constraint
[k′]c to forwarding location k′: (Loc 1) applies if the leading goal
is [k′]c and k′ is distinct from the origin location k, and sends c
to the buffer ~U ′ of k′. For (Loc 2) the forwarding location is the
origin location, hence no actual transmission occur and the local-
ization operator [k] is simply stripped away. Finally for (Loc 3)
with localization operator [k′], k′ does not appear anywhere in the
ensemble, hence we create a new location k′ with just c in the buffer
and all other collections empty10. (Act) applies to a leading goal of
the form p(~t). It introduces p(~t) : d into the store, where d is a
fresh constraint identifier, and puts the active constraint p(~t)#d : 1
as the new leading goal. This represents the initialization of rule
matching rooted at p(~t)#d starting from the rule head in the pro-
gram P that corresponds to the first occurrence index. The last four
derivation steps apply to leading goals of the form c#d : i. (Prop)
and (Simp) model the application of a 0-neighbor restricted CHR
rule instanceR ∈ P such that the ith rule head occurrence matches
c and respective partner constraints are found in the store. (Prop)
additionally enforces a history check similar to the traditional CHR
semantics [3, 13]. The purpose of this is to disallow multiple ap-
plications of rule instances that originate from the same multiset

10 New locations are introduced by existential forwarding locations in rule
bodies.

Ensembles



dΩe = dΩe~G
′
,
⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k

where ~G′ = Goals(Ω)

dΩ, 〈~U ; ~G ; S̄ ; H̄〉ke
~G′

= dΩe~G
′
, 〈d~Ue, d~Ge, dS̄e, ~G′|k〉k

d∅e~G
′

= ∅

Identity d∅e = ∅
Buffers dc, ~Ue = c, d~Ue
Stores dc#d, S̄e = c, dS̄e

Goals


dc, ~Ge = c, d~Ge
dc#d : i, ~Ge = d~Ge
d[k]c, ~Ge = d~Ge

Figure 10. Abstract Ensemble State Interpretation of Operational
Ensemble States

of constraints in the store11. The derivation (Next) increments the
occurrence index of the active constraint, while (Drop) removes
the active constraint from the goal once it has been tried on all rule
head occurrences. We define the transitive and reflexive application
of ωe0 derivation steps as P B Ω 7→∗ωe0 Ω′. A state Ω′ is reachable
by a program P under the ωe0 semantics if there exists some initial
state Ω such that P B Ω 7→∗ωe0 Ω′.

We are interested in a class of CHRe programs known as lo-
cally quiescent CHRe programs. We say that a CHRe program P
is locally quiescent if given any well-formed reachable state Ω, we
cannot have any infinite derivation sequences that does not include
the (Flush) derivation step. This specifically means that each loca-
tion k in a Ω must always (eventually and asynchronously) execute
to a state where its goals are empty, during which the (Flush) step
is applicable and the constraints in the buffer will be pushed into
the goals. Locally quiescent programs have the property that con-
straints sent across locations are not left to “starve” in a location’s
buffer, because local execution of a location k is guaranteed to be
terminating. Hence it is a form of progress guarantee that each lo-
cation will eventually process (activate, store and match) each con-
straint delivered to it. While we expect that it is reasonable that
distributed applications can possibly behave in a non globally qui-
escent manner 12, we expect that each location executes in a locally
quiescent manner as described here. We will explicitly consider lo-
cally quiescent programs in Section 7.

Given a state Ω, we define a meta operation Goals(Ω) that
denotes the consolidated sequence of all goals in Ω. We extend
the notion of location retrieval and location restriction on goals:

11 History checking is only required on propagation rules (r : P \ S ⇐⇒
G | B where S = ∅). For brevity, we conservatively apply history
checking to all states that applies to the (Prop) derivation step.
12 Globally quiescent: collective execution of the ensemble terminates. In
other words, there exists a reachable state where all locations of the ensem-
ble reaches quiescence.



(Flush)
~U 6= ∅

P B Ω, 〈~U ; ∅ ; S̄ ; H̄〉k 7→ωe0
Ω, 〈∅ ; ~U ; S̄ ; H̄〉k

(Loc 1) P B Ω,

(
〈~U ; ([k′]c, ~G) ; S̄ ; H̄〉k,
〈~U ′ ; ~G′ ; S̄ ′ ; H̄′〉k′

)
7→ωe0

Ω,

(
〈~U ; ~G ; S̄ ; H̄〉k,
〈(~U ′, [c]) ; ~G′ ; S̄ ′ ; H̄′〉k′

)
(Loc 2)

P B Ω, 〈~U ; ([k]c, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (c, ~G) ; S̄ ; H̄〉k

(Loc 3)
k 6= k′ k′ /∈ Locs(Ω)

P B Ω, 〈~U ; ([k′]c, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; ~G ; S̄ ; H̄〉k, 〈c ; ∅ ; ∅ ; ∅〉k′

(Act)
d is a fresh id

P B Ω, 〈~U ; (p(~t), ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (p(~t)#d : 1, ~G) ; (S̄, p(~t)#d) ; H̄〉k

(Simp)

r : [l]P ′ \ [l](S′, c′i, S
′′)⇐⇒ G | B ∈ P |= θ ∧G k = θl

DropIds(P ) = θP ′ DropIds(S) = θ(S′, S′′) c = θc′

P B Ω, 〈~U ; (c#d : i, ~G) ; (S̄, P, S, c#d) ; H̄〉k 7→ωe0
Ω, 〈~U ; (NF(Inst(θB)), ~G) ; (S̄, P ) ; H̄〉k

(Prop)

r : [l](P ′, c′i, P
′′) \ [l]S′ ⇐⇒ G | B ∈ P |= θ ∧G k = θl

DropIds(P ) = θ(P ′, P ′′) DropIds(S) = θS′ c = θc′ (d, Ids(P, S)) /∈ H̄
P B Ω, 〈~U ; (c#d : i, ~G) ; (S̄, P, S, c#d) ; H̄〉k
7→ωe0

Ω, 〈~U ; (NF(Inst(θB)), c#d : i, ~G) ; (S̄, P, c#d) ; (H̄, (d, Ids(P, S)))〉k

(Next)
(Simp) and (Prop) do not apply for c#d : i

P B Ω, 〈~U ; (c#d : i, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; (c#d : (i+ 1), ~G) ; S̄ ; H̄〉k

(Drop)
i /∈ OccIds(P)

P B Ω, 〈~U ; (c#d : i, ~G) ; S̄ ; H̄〉k 7→ωe0
Ω, 〈~U ; ~G ; S̄ ; H̄〉k

Figure 9. ωe0 Operational Semantics for CHRe

Locs(~G) denotes the set of distinct locations k such that [k]c ∈ ~G
for some c. Given location k, ~G|k denotes the sequence containing
all constraints c where [k]c ∈ ~G.

Figure 10 gives the translation function d−e that inductively
traverses the structure of an operational ensemble state Ω and trans-
lates it to a corresponding fragment of an abstract state A. At the
top-most level, dΩe is equal to dΩe~G

′
,
⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k

such that ~G′ = Goals(Ω) is the consolidated sequence of all goals
in the ensemble. The first component (dΩe~G

′
) takes each location

in Ω and collapse ~U , ~G and S̄ together while dropping the his-
tory H̄ entirely. Kept as a superscript is the sequence of all goals
~G′. Each location k also extracts from ~G′ all located constraints
that belong to k (i.e., ~G′|k). Buffer ~U is interpreted as a multiset of
constraints. For ~G, we discard active constraints c#d : i because
well-formed states have a corresponding c#d in S̄. We also dis-
card located constraints [k]c. For S̄, we strip away constraint ids
#d. We implicitly convert sequences (~U and ~G) into multisets. The
second component

⊎
k∈(Locs(~G′)−Locs(Ω))〈~G

′
|k〉k retrieves the set

of all locations k that are referenced in the goals but are not known
locations in Ω, and “creates” these new locations each containing
their respective fragment of the goals (i.e., ~G′|k).

Theorem 2 states that ωe0 derivations can be mapped to corre-
sponding ωeα derivations via the d−e interpretation of operational
states.

THEOREM 2 (Soundness of ωe0). Given 0-neighbor restricted CHRe

program P and states Ω and Ω′, if P B Ω 7→∗ωe0 Ω′, then
P B dΩe 7→∗ωeα dΩ

′e.

Note that a terminal state Ω (where all ~Ui = ∅ and ~Gi = ∅)
is in a state of quiescence where no ωe0 derivation steps can apply.
The ωe0 semantics guarantees that when we reach quiescence from
a well-formed initial state, all rules in the program have been
exhaustively applied. Serializability of concurrent execution of ωe0
derivations can be proven in manner similar to [4, 7]. Details of the
proof of exhaustiveness and concurrency is found in the technical
report [6].

7. Encoding 1-Neighbor Restriction
In this section, we define a translation that transforms a 1-neighbor
restricted program into a 0-neighbor restricted program. Given a 1-
neighbor restricted rule r : [X]Px,[Y ]Py \ [X]Sx,[Y ]Sy ⇐⇒
G | B, we designate X as the primary location and Y as the
neighbor location. We define two properties of a 1-neighbor re-
stricted rule r, namely that r is primary propagated if Sx = ∅
and that r is neighbor propagated if Sy = ∅. We call Px and
Sx the primary matching obligations, while Py and Sy are the
neighbor matching obligations. We only consider locally quiescent
CHRe programs from this section.

7.1 Basic Encoding Scheme
Figure 11 illustrates our basic encoding scheme,  basic

1Nb on an
example. It applies to a 1-neighbor restricted rule that is neither



swap :

(
[X]neighbor(Y ),

·

)
\
(

[X]color(C),
[Y ]color(C′)

)
⇐⇒

(
[X]color(C′),
[Y ]color(C)

)

 basic
1Nb



swap 1 : [X]neighbor(Y ),[X]color(C) =⇒ [Y ]swap req(X,Y,C)

swap 2 : [Y ]color(C′) \ [Y ]swap req(X,Y,C)⇐⇒ [X]swap match(X,Y,C,C′)

swap 3 : [X]neighbor(Y ) \ [X]color(C),[X]swap match(X,Y,C,C′)
⇐⇒ [Y ]swap commit(X,Y,C,C′)

swap 4a : [Y ]swap commit(X,Y,C,C′),[Y ]color(C′)⇐⇒ [X]color(C′),[Y ]color(C)

swap 4b : [Y ]swap commit(X,Y,C,C′)⇐⇒ [X]color(C)


Figure 11. Color Swapping Example: 1-Neighbor Restricted Rule

primary nor neighbor propagated. We assume that constraints of
the predicate neighbor are never deleted, i.e., no other rules in
a program with the swap rule have a neighbor constraint as a
simplified head. We call such a constraint a persistent constraint.
A constraint c is persistent if there is no substitution θ such that
θc = θc′ for some rule r : P \ S ⇐⇒ G | B ∈ P and
constraint c′ ∈ S. Note that the rule heads demand that we must
atomically observe that in some location X we have neighbor(Y )
and color(C), while in Y we have color(C′). This observation
must be atomic in the sense that the observation of X’s and Y ’s
matching obligations should not be interrupted by an interleaving
concurrent derivation.

The 0-neighbor restricted encoding of the swap rule (Fig-
ure 11) recovers this atomicity: In swap 1 X sends a swap re-
quest swap req(X,Y,C) to Y if it possesses the primary match-
ing obligation of the swap rule. In swap 2 if Y observes this
request together with a color(C′), it responds to X by sending
swap match(X,Y,C,C′). Note that in this example,
swap req(X,Y,C) is simplified since X’s matching obligation
is not primary propagated13. In swap 3 , X must observe that it
has a response from Y (swap match(X,Y,C,C′)) and that its
matching obligations are still valid14, then it sends a commit re-
quest to Y swap commit(X,Y,C,C′). This is the point where
X actually commits to the match by consuming color(C). From
here there are two possibilities: swap 4a considers that, if Y still
possesses the matching instance of color(C′), we complete the ex-
ecution of swap by delivering its rule body. swap 4b considers the
alternative case where Y no longer has color(C′) hence we cannot
commit to the rule instance. Hence we roll back X’s commitment
by returning color(C) to X . Note that ωe0’s sequencing of rule
occurrences is vital to ensure that given a swap commit instance,
rule matching for swap 4a is always attempted before swap 4b.
We call the predicates introduced in the encoding (like swap req ,
swap match) synchronizing predicates and constraints they form
synchronizing constraints.

The five 0-neighbor restricted rules in Figure 11 implement
an asynchronous and optimistic synchronization protocol between
two locations of the ensemble. It is asynchronous because nei-
ther primary X nor neighbor Y ever “blocks” or busy-waits for
responses. Rather they communicate asynchronously via the syn-
chronizing constraints, while potentially interleaving with other
derivation steps. It is optimistic because non-synchronizing con-

13 If it was primary propagated (by making [X]color(C) of the swap
rule propagated instead), we would have to propagate swap req(X,Y,C)
instead, since X’s matching obligation can match and apply to multiple
instances of swap (see Figure 12 for such an example).
14 This revalidation ensures that Y ’s observation of its matching obligation
has not been invalidated by an interleaving rule application that consumed
any part of X’s obligations.

straints are only ever consumed after both X and Y have indepen-
dently observed their respective fragment of the rule head instance.

Figure 12 defines another example of a 1-neighbor restricted
rule that differs from the swap example in two ways: It is pri-
mary propagated and it contain a primary propagated head (namely
color(C)) that is not persistent. We highlight in boxes the frag-
ments which differ by the fact that the rule is primary propagated,
and with an underline the fragments which differ by the fact that
propagated head color(C) is not persistent.

Since prop is primary propagated, it is possible that a sin-
gle instance of this rule head fragment be applied to multiple in-
stances of [Y ]color(C′) for a particular location Y . If we follow
a similar encoding to the swap 2 rule for the previous example
(Figure 11) we cannot guarantee exhaustiveness of 1-neighbor re-
stricted rule application. Therefore, as highlighted in a box in fig-
ure 12, rule prop 2 is defined such that the synchronizing con-
straint prop req(X,Y,C) is propagated as opposed to being sim-
plified (highlighted in a box).

Since prop has a non persistent propagated head, in order to
safely guarantee that the observation of X and Y matching obli-
gations are done independently, prop3 commits its obligation by
deleting its non persistent propagated constraint(s), in this case
color(C), while in prop4a and prop4b, this constraint is returned
to X . While this possibly introduces additional overhead, it is cru-
cial to ensuring the safety of this rule application.

Figure 13 defines the basic encoding scheme for 1-neighbor
restricted rule. It is denoted by R1  basic

1Nb P0, where R1 is a
well-formed 1-neighbor restricted rule while P0 a well-formed
0-neighbor restricted program. The propagated rule heads of the
primary location X are split into two, namely Px containing all
rule heads which are persistent in P1 and P ′x containing all those
which are non-persistent. P ′x and Sx will be consumed in r 3 when
the primary location commits, this effectively “locks” the primary
matching obligation. The neighbor location Y applies r 4a to
complete the rule application r, specifically adding the rule bodyD
and “unlocking” P ′x, the primary propagated rule heads which are
not persistent. If it is unable to complete this rule application, r 4b
is applied to roll-back location X’s commit attempt by returning
P ′x and Sx to X . MatchRule(·) characterizes the fragment of
the encoding unique to primary propagated 1-neighbor restricted
rules, while MatchRule(Sx ) for a non-empty Sx represents the
corresponding fragment of non-primary propagated rules. Xs and
Ys are the set of variables of the primary and neighbor location rule
heads while Rs is the union of the two. Rule guards are divided
into two parts, namely Gx the primary rule guards and Gy the
neighbor rule guards. Primary rule guards Gx are all the guard
conditions that are grounded by Xs , while Gy are the rest of the
guards. We refer to these rules (r i) as encoding rules. The meta
operator DropSyncs(S̄;P) denotes the multiset of all constraints
that appear in S̄ that are not synchronizing constraints of P .



prop :

(
[X]neighbor(Y ),[X]color(C)

·

)
\
(

·
[Y ]color(C′)

)
⇐⇒ [Y ]color(C)

 basic
1Nb



prop1 : [X]neighbor(Y ),[X]color(C) =⇒ [Y ]prop req(X,Y,C)

prop2 : [Y ]color(C′),[Y ]prop req(X,Y,C) =⇒ [X]prop match(X,Y,C,C′)

prop3 : [X]neighbor(Y ) \ [X]color(C), [X]prop match(X,Y,C,C′)

⇐⇒ [Y ]prop commit(X,Y,C,C′)

prop4a : [Y ]prop commit(X,Y,C,C′),[Y ]color(C′)⇐⇒ [X]color(C),[Y ]color(C)

prop4b : [Y ]prop commit(X,Y,C,C′)⇐⇒ [X]color(C)


Figure 12. Color Propagation Example: Primary Propagated 1-Neighbor Restricted Rule

(r : [X]Px, [X]P ′x, [Y ]Py \ [X]Sx, [Y ]Sy ⇐⇒ Gx, Gy | ∃z̄. D)

 basic
1Nb


r 1 : [X ]Px , [X ]Sx =⇒ Gx | [Y ]r req(Xs)
MatchRule(Sx )
r 3 : [X ]Px \ [X ]P ′x , [X ]Sx , [X ]r match(Rs)⇐⇒ [Y ]r commit(Rs)
r 4a : [Y ]Py \ [Y ]Sy , [Y ]r commit(Rs)⇐⇒ ∃z̄ . [X ]P ′x ,D
r 4b : [Y ]r commit(Rs)⇐⇒ [X ]P ′x , [X ]Sx


where
All c ∈ Px are persistent constraints and all c′ ∈ P ′x are non-persistent constraints
MatchRule(.) = r 2 : [Y ]Py , [Y ]Sy , [Y ]r req(Xs) =⇒ Gy | [X ]r match(Rs)
MatchRule(Sx ) = r 2 : [Y ]Py , [Y ]Sy \ [Y ]r req(Xs)⇐⇒ Gy | [X ]r match(Rs) if Sx 6= .
Xs = FV(Px ,P

′
x ,Sx ) Ys = FV(Py ,Sy) Rs = FV(Px ,P

′
x ,Sx ,Py ,Sy)

FV(Gx ) ⊆ FV(Px ,P
′
x ,Sx ) FV(Gy) ⊆ FV(Px ,P

′
x ,Sx ,Py ,Sy)

Figure 13. Basic Encoding of 1-Neighbor Restricted Rules

As illustrated in Figure 13, we generalize the application of
this translation to 1-neighbor restricted programs, thus given
a 1-neighbor restricted program P1, we have its encoding via
P1  basic

1Nb P0, such that the encoding operation is applied to
each 1-neighbor restricted rule in P1 while 0-neighbor restricted
rules are simply left unmodified. All rule encodings (each a 0-
neighbor program) are then concatenated into a single 0-neighbor
restricted programP0. We assume that unique rule head occurrence
indices are issued in order of rule head appearance in P0. When
required for specific discussions, we will denote a (Simp) or (Prop)
derivation step that involves the application of a r i encoding rule
instance as P B Ω 7→r i

ωe0
Ω′, where Ω and Ω′ are the states before

and after the application of r i .
It is possible that a partial sequences of encoding rules (r i)

is executed in a ωe0 derivation. For instance, primary location X
can apply r 1 but never receives a reply from neighbor location
Y with r 2 because Y does not possess the matching obligations
required to complete the rule instance. Or similarly, Y can apply
r 2 in response to X’s instance of r 1 , but never receives a re-
ply from X with r 3 because X no longer possess matching obli-
gations. Such partial sequences of execution are the side-effect of
asynchrony in this synchronization protocol, and are benign in that
they do not rewrite (delete or insert) non-synchronizing constraints.
Furthermore, their only observable effects are the introduction of
synchronizing constraints r req and r match whose only purpose
and effect is the sequencing and staging of the flow of consensus
building between locations X and Y .

We now consider the soundness of this encoding. Specifically,
the soundness condition that we need is that the ωe0 derivations of
the 0-neighbor restricted encodings of a 1-neighbor restricted pro-
gram P derive valid states computable by P in the ωeα semantics.
However, not all states derived by our encodings are such valid

states: It is possible that the ωe0 derivations of the 0-neighbor re-
stricted encodings derive intermediate states in which a 1-neighbor
restricted rule instance is partially applied. Specifically, after appli-
cation of r 3 only the X matching obligation is consumed, hence
the rule instance is only partially applied. For this reason, the en-
codings are defined such that these intermediate states always con-
tain the r commit synchronizing constraint. We call such states
non-commit free states and commit free states are all other states
that do not contain r commit . A state Ω is commit free if and only
if for all 〈S̄〉k ∈ dΩe, all p(~t) ∈ S̄ is such that p 6= r commit .
Note we use dΩe for the convenience of collapsing the contents of
buffers, goals and stores of the ωe0 semantics into one abstract store
of the ωeα semantics. By definition of the d−e translation, this ef-
fectively means that all buffers, goals and store in the operational
state Ω must not contain any commit synchronizing constraints in
order for Ω to qualify as a commit-free state. An important prop-
erty of this encoding is that non-commit free states can always be
eventually returned to a commit free state by applying either r 4a
or r 4b, resulting to the complete execution of r or a roll-back
to the state before its execution attempt, respectively. Note that
this is only true for CHRe programs which are locally quiescent:
The reason is because if a location’s execution is not locally quies-
cent, it might never push buffered constraints into the goals (via the
(Flush) derivation step of ωe0 semantics) and hence might remain
non-commit free indefinitely.

Lemma 3 states that the encoding operation  basic
1Nb preserves

local quiescence of CHRe programs.

LEMMA 3 ( basic
1Nb Preserves Local Quiescence). Given a locally

quiescent 1-neighbor restricted program P1 and a 0-neighbor re-
stricted program P0 such that P1  basic

1Nb P0, then P0 is also lo-
cally quiescent.



blend :

(
[X]neighbor(Y ),
[Y ]pallete(C′)

)
\
(

[X]color(C)
·

)
⇐⇒ [Y ]color(C + C′)

 n−persist
1Nb

 blend1 : [X]neighbor(Y ),[X]color(C) =⇒ [Y ]blend req(X,Y,C)
blend2 : [Y ]pallete(C′) \ [Y ]blend req(X,Y,C)⇐⇒ [X]blend match(X,Y,C,C′)
blend3 : [X]neighbor(Y ) \ [X]color(C),[X]blend match(X,Y,C,C′)⇐⇒ [X]color(C + C′)



(r : [X]Px, [Y ]Py \ [X]Sx ⇐⇒ Gx, Gy | B)  n−persist
1Nb

(
r 1 : [X ]Px , [X ]Sx =⇒ Gx | [Y ]r req(Xs)
MatchRule(Sx )
r 3 : [X ]Px \ [X ]Sx , [X ]r match(Rs)⇐⇒ B

)
where
All c ∈ Py are persistent constraints
MatchRule(.) = r 2 : [Y ]Py , [Y ]r req(Xs) =⇒ Gy | [X ]r match(Rs)
MatchRule(Sx ) = r 2 : [Y ]Py \ [Y ]r req(Xs)⇐⇒ Gy | [X ]r match(Rs) if Sx 6= .
Xs = FV(Px ,Sx ) and FV(Gx ) ⊆ FV(Px ,Sx ) and FV(Gy) ⊆ FV(Px ,Py ,Sy)

Figure 14. Optimized Encoding for Neighbor Persistent Rule

Lemma 4 states the property that non-commit free states can
always eventually derive commit free state.

LEMMA 4 (1-Neighbor Commit-Free Reachability). Given a lo-
cally quiescent 1-neighbor restricted programP1 and a 0-neighbor
restricted program P0 such that P1  basic

1Nb P0 and states Ω reach-
able by P0, if Ω is not commit-free, then there exists some commit-
free state Ω′ such that P0 B Ω 7→∗ωe0 Ω′.

Lemma 5 states that given any ωeα derivation between two
commit free state P0 B A 7→∗ωeα A

′, we can safely permute it
such that all applications of r 3 encoding rules are immediately
followed by either r 4a or r 4b. This lemma is proven by using
the monotonicity property of the ωeα semantics (Details in [6]).

LEMMA 5 (Basic Encoding Rule Serializability). Given a 1-neighbor
restricted and locally quiescent CHRe program P1 and a 0-
neighbor restricted CHRe program P0 such that P1  1Nb P0

and commit free abstract states A1 A2, A3 and A4, given that:

1. For encoding rule instances r 3 and r 4a , we have
P0 B A1 7→r 3

ωeα
A2 7→∗ωeα A3 7→r 4a

ωeα
A4 then existsA′2,A′3

such thatP0 BA1 7→∗ωeα A
′
2 7→r 3

ωeα
A3 7→r 4a

ωeα
A′3 7→∗ωeα A4

2. For encoding rule instances r 3 and r 4b, we have
P0 B A1 7→r 3

ωeα
A2 7→∗ωeα A3 7→r 4b

ωeα
A4 then existsA′2,A′3

such thatP0 BA1 7→∗ωeα A
′
2 7→r 3

ωeα
A3 7→r 4b

ωeα
A′3 7→∗ωeα A4

Theorem 6 asserts the soundness of the basic encoding: It states
that ωe0 derivations between commit free states of 0-neighbor re-
stricted encodings have a mapping to ωeα derivations of its original
1-neighbor restricted program.

THEOREM 6 (Soundness of Basic Encoding). Given a 1-neighbor
restricted and locally quiescent CHRe program P1 and a 0-
neighbor restricted CHRe program P0 such that P1  basic

1Nb P0,
for any reachable states Ω and Ω′, ifP0BΩ 7→∗ωe0 Ω′, then we have
either Ω′ is not commit free or P1 B DropSyncs(dΩe;P1) 7→∗ωeα
DropSyncs(dΩ′′e;P1).

7.2 Optimizations
We define optimized encoding schemes for two special cases. Con-
sider the basic encoding scheme in Figure 13. Suppose that we ap-
ply to it a 1-neighbor restricted rule that is neighbor propagated
(i.e., Sy = ∅) and furthermore Py is persistent. We call such rules
neighbor persistent. This encoding executes an unnecessary indi-
rection of sending r commit to neighbor Y in r 3 and completing
the rule instance r with either r 4a or r 4b. However if Sy = ∅,
primary location X can immediately complete the rule instance at

r 3 without further communications with Y . This specialized en-
coding scheme is denoted by n−persist

1Nb is shown in Figure 15. We
also show an example rule blend which has this property (Sy = ∅
and we assume constraints pallete(C) are persistent).

The next optimized encoding scheme applies specifically to 1-
neighbor restricted rules which are not only primary propagated,
but furthermore all propagated matching obligations are persis-
tent15. We call such rules primary persistent rules. An example
of this is the trans rule of the program of figure 1: Its primary
matching obligation consists of only one propagated constraint
edge(Y,D) which is never deleted by any rule of the program. Fig-
ure 15 shows this specialized encoding as the function p−persist

1Nb .
This optimized translation scheme is very similar to rule localiza-
tion of link-restricted rule in distributed Datalog [8] and indeed it
is a special case of rewriting where left-hand sides are not removed
as a result of rule application.

Given a 1-neighbor restricted program P1, we define the trans-
lation function P1  1Nb P0, where P0 is the 0-neighbor re-
stricted program encoding in which we apply the optimized encod-
ings where possible: We apply n−persist

1Nb for 1-neighbor restricted
rules in P1 that are neighbor persistent, while we apply p−persist

1Nb

for those that are primary persistent, and  basic
1Nb for all other 1-

neighbor restricted rule.
We now consider the soundness of the optimized encoding (the

soundness of the basic encoding has been shown in the previous
section). In general, both the neighbor and primary persistent en-
coding schemes exploit a similar property: one location’s matching
obligation M of the 1-neighbor restricted rules is completely per-
sistent and we do not need to lock and reserve any constraint in M .
This simplifies the application of such 1-neighbor restricted rules
and as long as we observe that persistent matching obligations M
are fulfilled, the rule application can be completed entirely at the
other location’s discretion. Lemma 7 and 8 states this property for
the neighbor persistent and primary persistent encoding schemes
respectively.

LEMMA 7 (Neighbor Persistent Encoding Rule Serializability).
Given a 1-neighbor restricted and locally quiescent CHRe pro-
gram P1 and a 0-neighbor restricted CHRe program P0 such that
P1  1Nb P0 and commit free abstract states A1 A2, A3 and A4,
for some neighbor persistent encoding rule instances r 2 and r 3 ,
we have P0 B A1 7→r 2

ωeα
A2 7→∗ωeα A3 7→r 3

ωeα
A4 then there ex-

ists someA′2 such that P0 B A1 7→∗ωeα A
′
2 7→r 2

ωeα
A3 7→r 3

ωeα
A4

15 This corresponds to a rule in Figure 13 such that Px = ∅ and Sx = ∅,
hence we only have P ′x the persistent propagated rule heads.



trans : [X]edge(Y,D) , [Y ]path(Z ,D ′) =⇒ X 6= Z | [X ]path(Z ,D + D ′)

 p−persist
1Nb

(
trans 1 : [X]edge(Y,D) =⇒ [Y ]trans req(X,D)
trans 2 : [Y ]trans req(X,D),[Y ]path(Z,D′) =⇒ X 6= Z | [X]path(Z,D +D′)

)

(r : [X]Px, [Y ]Py \ [Y ]Sy ⇐⇒ Gx, Gy | B)  p−persist
1Nb

(
r 1 : [X ]Px =⇒ Gx | [Y ]r req(Xs)
r 2 : [Y ]r req(Xs),[Y ]Py \ [Y ]Sy ⇐⇒ Gy | B

)
where All c ∈ Px are persistent constraints

Xs = FV(Px ) and FV(Gx ) ⊆ FV(Px ) and FV(Gy) ⊆ FV(Px ,Py ,Sy)

Figure 15. Optimized Encodings for Primary Persistent Rules

LEMMA 8 (Primary Persistent Encoding Rule Serializability).
Given a 1-neighbor restricted and locally quiescent CHRe pro-
gram P1 and a 0-neighbor restricted CHRe program P0 such that
P1  1Nb P0 and commit free abstract states A1 A2, A3 and A4,
for some primary persistent encoding rule instances r 1 and r 2 ,
we have P0 B A1 7→r 1

ωeα
A2 7→∗ωeα A3 7→r 2

ωeα
A4 then there ex-

ists someA′2 such that P0 B A1 7→∗ωeα A
′
2 7→r 1

ωeα
A3 7→r 2

ωeα
A4

Theorem 9 states the soundness of the optimized encoding.

THEOREM 9 (Soundness of Optimized Encoding). Given a 1-
neighbor restricted and locally quiescent CHRe program P1 and a
0-neighbor restricted CHRe program P0 such that P1  1Nb P0,
for any reachable states Ω and Ω′, ifP0BΩ 7→∗ωe0 Ω′, then we have
either Ω′ is not commit free or P1 B DropSyncs(dΩe;P1) 7→∗ωeα
DropSyncs(dΩ′′e;P1).

8. Encoding n-Neighbor Restriction
We briefly discuss a generalized encoding scheme for n-neighbor
restricted rules. The basic 1-neighbor restricted encoding of Fig-
ure 13 implements a consensus protocol between two nodes.
Specifically, this encoding implements a two-phase commit pro-
tocol [14] led by an initial round of matching. Rules r 1 and r 2
represent the matching phase, while r 3 the voting phase, and r 4a
and r 4b the commit phase. The encoding of n-neighbor restricted
rules is then an implementation of a general consensus protocol
that establishes consensus of a rule application among the primary
locationX (acting as the coordinator of the consensus) and n other
directly connected and isolated neighbor locations Yi for i ∈ [1, n]
(acting as the cohorts of the consensus). Details of the generalized
encoding can be found in [6].

9. Conclusion and Future Works
We introduced CHRe, an extension of CHR with located con-
straints and n-neighbor restricted rules for programming an en-
semble of distributed computing entities. We defined the ωeα ab-
stract semantics and ωe0 operational semantics of CHRe and showed
their soundness. We gave an optimized encoding for 1-neighbor re-
stricted rules into 0-neighbor restricted rules. Following this, we
generalize this encoding scheme for n-neighbor restricted rules.
We have developed a prototype implementation of CHRe in Python
with MPI (Message Passing Interface) as a proof of concept and
demonstrated its relative scalability in distributed execution. In the
future we intend to develop a more practical and competitive imple-
mentation of CHRe in C or C++, imbued with existing CHR opti-
mization techniques [13]. We also intend to explore an implementa-
tion over higher-level distributed graph processing frameworks like
Google’s Pregel [9]. Additionally, we intend to explore using ωe0 to
serve as an operational semantics that describes the core multiset
rewriting fragment of Meld and derive extensions like aggregates
and comprehensions as higher-level language encodings into ωe0 .

Our works on encoding n-neighbor restricted rules can be also ap-
plied to extend Meld.
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