
Computational BPL - A
Stochastic Approach

Gergei Bana

with Koji Hasebe and Mitsuhiro Okada

Two Approaches to Modeling
Cryptographic Protocols

Symbolic
Uses high level formal language

Amenable to automatization

Treats encryption as black-box operation

Accuracy is unclear

Computational
More detailed description using probabilities and complexity

Proofs by hand

More accurate

Formal Model

Descryption via formal logic

Finding adversaries:
Encryption is a black-box operation

Given a protocol, use automation to
find attacks or prove security

Computational View

Sequence (ensemble) of probability distributions
indexed by security parameter η. As η increases, the
distributions become more spread.
Negligible function:

f(η): for any n natural, there is an η0 such that whenever η >
η0, f(η) < 1/ ηn.

Adversary:
An adversary is successful if it can do bad things with non-
negligible probability:

Security proofs rely on the assumption that are that
certain operations (e.g. computing logarithm) are
infeasible

CCA: the function is neglibible in η
)

Many approaches

Linking the two approaches started with Martin
Abadi and Philip Rogaway around 2000.
Today, many approaches are investigated, most
importantly:

Original Abadi-Rogaway for passive adversaries and its
expasions
Computational Protocol Compositional Logic of Stanford
Reactive Simulatability of M. Backes, B. Pfitzmann, M. Waidner
Universial Composability - R. Canetti, J Herzog
D. Micciancio - B. Warinschi
P. Laud - an A-R style approach to active adversaries
some others

Common aspects
Formal model is simpler, amenable to automation so we want to
analyze the formal model, but get computational conclusions
Natural transition between the models by giving specific
computational meaning to formal objects (such as encryption,
concatenation etc...)
Aim: Develop formal models such that

Security proven formally should imply computational security - Soundness
Formal attack should imply computational attack - Completeness

Soundness and Completeness are important notions in all these
approaches, but their exact meaning differ from one approach to
another.

Watch out:
The different approaches are investigated by different groups. It is not
quite clear what the limitations of these approaches are and how they relate
to each other
Some of the proofs seem to be only understood by the authors. Are they
all correct?

Using First Order Logic
Already existing attempt: Protocol Composition Logic: Datta, Mitchell and
cooperators mostly at Stanford

Modal logic similar to Floyd-Hoare logic
Proof system: first order logic with axioms and proof rules for protocol actions and
temporal reasoning - syntax
Formal adversary appears as a particular run of the protocol - semantics
Computational semantics: A run or the protocol (controlled by an adversary) is a set
of (equiprobable) computational traces.
The satisfaction of a modal formula can be checked on each trace and from there
the satisfaction in a run, and validity is defined
Soundness: If a formula is provable in the syntax, then it is satisfied by any run of
the protocol
Problems: Dependence of future is allowed, confusion of what strings correspond to,
not tracking correlations, questionable proofs

Our suggestions:
Instead of focusing on individual traces, focus on probability distributions
A run of the protocol (controlled by an adversary) is a probability distribution of
computational traces.
Syntactic formulas are interpreted as probability distributions
A formula is satisfied if a cross section of the computational traces gives the
correct distributions.
Computational Soundness: If a formula is provable in the syntax, then it is valid;
that is, true in any computational run

So far only done on a simpler syntax: Basic Protocol Logic by M. Okada
and K. Hasebe

Basic Protocol Logic
Ordered sorts:

names, nonces are both messages
for A constant, sort coinA is also sort coin

Notation for names:
constant: A, B,..
variables: Q, Q’, Q1,...
either: P, P’, P1,...

Notation for nonces:
constants: N, N’, N1,..
variables: n, n’, n1,...
either: ν, ...

Notation for messages:
constants: either names or nonces: M, M’,...
variables: m, m’, m1, ...

Terms:
t ::= M | m | (t1,t2) | {t}

Formulas:
φ ::= P1 acts1 t1; ... ;Pk actsk tk | t1 = t2 | t1 ⊑ t2 | ¬φ | φ1∧φ2 | φ1∨φ2 | φ1→φ2 | ∃mφ | ∀mφ

where acts is one of sends, receives, generates
= represents equality
⊑ represents subterm
α ≡ P1 acts1 t1; ... ;Pk actsk tk is called a trace formula

An order preserving merge of two trance formulas
The merge of α and β is a γ that contains both α and β in the right order and nothing
else.

Notation for coins, coinsA:
constants: r,... rA,..
variables: s,... sA,..
either: ρ, ... ρA,..

ρ
P

Roles and Axioms
A role is a trace formula of the form

α ≡ Q acts1 t1; ... ;Q actsk tk

A protocol is a set of roles.
Axioms

Usual first order logic axioms
Some further term axioms such as

β→α for α⊆β
γ1∨...∨γn↔ α∧β for γi all order preserving merges of α and β.
Non-logical axioms about ordering and security: E.g. if a nonce is
generated and is sent out encrypted with the key of A, then, if it
later appears in some other way, then it had to go through A.

Honesty and Query Forms
Q does only the role αQ:

Only(αQ) ≡ ∀n(Q generates n → n∈Generates(αQ)) ∧

 ∀m1(Q sends n → m1∈Sends(αQ)) ∧

 ∀m2(Q receives n → m1∈Receives(αQ))

Q does only the role αQ but may not finish:
Honest(αQ) ≡ ∃Qn∨i∈{0}∪{ j | actsj = sends }∪ {k} αQ≤i ∧ Only(αQ≤i)

Query form:
Honest(αA) ∧ βB ∧ Only(βB) → γ

Protocol correctness holds if the query form can be proven in the
syntax

Computational Execution

Fix a computational public key encryption scheme that is
CCA-2 secure

Key generation algorithm Kη output randomly generated encryption
decryption key pair (e,d)
Encryption algorithm: for a key e, plaintext s, and random seed r,
outputs E(e, s, r)
Decryption for decryption key d and ciphertext c outputs D(d, c) such
that D(d, E(e, s, r)) = s if (e,d) is generated by Kη

Fix a computational pairing
[,]

Honest participants follow their role, other malicious
participants may be present

Computational execution for each value of η provides
a probability space (Ω,p) E.g. see graph.
a trace Tr (ω) = P1(ω) acts1(ω) s1(ω); ... ;Pk(ω)(ω) actsk(ω)(ω) sk(ω)(ω)
for each ω, where Pi(ω) are names of the participants in bit strings,
actsk(ω)(ω) are either send receive or generate, and si(ω) are bit
strings.

When can we say that A sends t? When should
this formal expression be satisfied?
Should be something like:

Computational interpretation of a term gives a
probability distribution of bit strings on Ω.
First constants have to be interpreted, then
variables, then terms.
t1 = t2 is satisfied in the computational semantics
if the interpretations are equal
t1 ⊑ t2 is satisfied in the semantics if there is a
term t with t1 ⊑ t such that the interpretation
of t and of t2 are equal.
P acts t is satisfied if there is a function J on Ω
with natural values such that TrJ(ω)(ω) is of
the form P acts s1(ω) where s1(ω) is the
interpretation of t.

But there are problems... Can J be
arbitrary? No, it cannot depend on the
future...

ω2

ω3

ω4
ω5

ω6
ω7

ω8
ω9

ω10
ω11

ω12
ω13

ω14ω15

ω161st
coin toss

2nd
coin toss

3rd
coin toss

4th
 coin toss

ω1

Ω

Computational Execution

Filtration 1
ω1

ω2

ω3

ω4
ω5
ω6
ω7

ω8
ω9

ω10
ω11

ω12ω13

ω14ω15

ω161st
coin toss

Random variables
that are determined

until the 2nd coin toss
are constant on these

four sets.

2nd
coin toss

3rd
coin toss

4th
 coin toss

How are random
variables that depend
only on randomness
until 2nd coin toss

characterised?

Let F2 denote the set
of these sets.

Random variables
that are independent
of what happened

until the 2nd coin toss
have the same
distributions

restricted to these
sets.

Filtration 2
ω1

ω2

ω3

ω4
ω5
ω6
ω7

ω8
ω9

ω10
ω11

ω12ω13

ω14ω15

ω161st
coin toss

Random variables
that are determined
until the 1st coin toss
are constant on these

two sets.

2nd
coin toss

3rd
coin toss

4th
 coin toss

Let F1 denote these
sets.

In general: F0, F1, F2,...,
Fn -filtration

Random variables
that are independent
of what happened

until the 1st coin toss
have the same
distributions

restricted to these
sets.

Stopping time
ω1

ω2

ω3

ω4
ω5
ω6
ω7

ω8
ω9

ω10
ω11

ω12ω13

ω14ω15

ω161st
coin toss

Events until the
stopping time J.

Random variables that
depend only on events
until J are constant on

these sets.

2nd
coin toss

3rd
coin toss

4th
 coin toss

The set of these sets:
FJ

Stop so that it does
not depend on future

Computational objects corresponding to constants and variables:
Principals. DP A set of bit-string for the principals (indexed by η). To each element A,
there belongs a pair of random variables (eA(ω),dA(ω)) on Ω for the generated keys
such that they are measurable with respect to F0.
Nonces: DN Elements are random variables (indexed by η) on Ω which have even
distribution on a set of bit strings with fixed length.
Messages DM: random variables taking on Ω bit-string values.
Random seeds of encryption: R random variables, Rg with good distribution for the
encryption in question.

Interpretation of constants, variables and terms
ΦC(A) is in DP such that the associated (eA(ω),dA(ω)) has the correct distribution and
for different constants they are independent, ΦC(N) is in DN, ΦC(r) is in Rg

ΦC(A) is extended to variables so that Φ(Q) is in DP, Φ(n) is in DN, Φ(m) is in DM, Φ(sA) is
in Rg, Φ(s) is in R.
Φ((t1,t2))= [Φ(t1),Φ(t2)],
Φ({t}) = E(eΦ(P) , Φ(t) , Φ(ρ)) (some difficulty here as for honest encryptions
random seed have to be independent of what happened before)

From this presentation we are omitting technical difficulties arising
from the security parameter and equivalence up to negligible
probability. Detail are in the proceedings.

ρ
P

Computational Semantics

Satisfaction of formulas
t1 = t2 is satisfied in the computational semantics if Φ(t1) = Φ(t2), t1 ⊑ t2 is satisfied in
the semantics if there is a term t with t1 ⊑ t such that Φ(t) = Φ(t2)
P sends/receives t is satisfied if there is a stopping time J on Ω such that TrJ(ω)(ω) is
of the form P sends/receives s1(ω) where s1(ω) is the interpretation of t
P generates ν is satisfied if there is a stopping time J on Ω such that TrJ(ω)(ω) is of
the form P generates s1(ω) where s1(ω) is the interpretation of ν and s1(ω) is
independent of FJ-1

For sequence of actions P1 acts1 t1; ... ;Pk actsk tk same, but J1, J2,... Jk

Then satisfaction of ¬φ φ1∧φ2 φ1∨φ2 φ1→φ2 ∃mφ ∀mφ are defined in the

usual way.
A formula is true in a model if for each extension of Φ to variables is satisfied.

Soundness
If the encryption scheme is CCA-2, then the axioms of BPL are computationally sound,
and therefore, if a formula can be proven in BPL, then it is true in any computational
execution.

Satisfaction and Soundness

Showed a new, fully probabilistic technique to give
sound computational semantics to first-order syntax.
Filtrations from the theory of stochastic processes
play an essential role
Soundness

Apply the method to Protocol composition logic

Conclusions

