Empirical study of the impact of Metasploit-related attacks in 4 years of attack traces

E. Ramirez-Silva and M. Dacier

Eurécom Institute - Sophia Antipolis, France

ASIAN'07

December 11, 2007- Doha, Qatar

Overview

Introduction

- The Leurré.com project
- Experimental framework
- Experimental results
- Conclusions

Overall goal of the approach

- What can honeypots tell us about "script kiddies" related attacks?
 - How much impact do they have on these datasets?
 - Where do they come from?
 - When are we likely to see them?
 - Do they have a specific profile of activity?

To be or not to be a script kiddie

Question:

– Among all the attacks observed on a honeypot, how can we distinguish those likely due to script kiddies?

Answer:

 Define and detect on the honeypot the traces left by a specific tool, supposed to be used by script kiddies.

Our response

- Script kiddie tool:
 - We have decided to identify and study only instances of attacks likely due to metasploit plugins.
- Traces of the attack tool:
 - We have built an environment to run all attacks against a honeypot in a monitored environment.
 - The recorded traces are used to generate "network signatures" for each plugin.

To be or not to be at the right place

- Question:
 - What is the best "place" to look for attacks?
- Answer:
 - Everywhere in the world as previous work have shown that different blocks of addresses can be hit by different types of attacks.

Our response

- Our source of information:
 - We use attack traces collected by the low-interaction honeypots deployed within the Leurré.com project.
- Origin of the data:
 - This gives us access to 4 years of data collected in a large number of different environments, on the very same type of platform
 - 50 platforms in 30 different countries as of today
 - None in Qatar ... yet ...

Caveat

- We acknowledge the fact that, by focusing on Metasploit plugins only, we address a small fraction of the whole problem space
 - → The experiments only derive lower bounds of the amount of attacks due to script kiddies.
- The lessons learned are, hopefully, of a much broader interest.

Overview

- Introduction
 - The Leurré.com project
 - Experimental framework
 - Experimental results
- Conclusions

Leurré.com: a brief overview

- Ongoing effort since 2003:
 - Around 50 platforms running today in 30 different countries
 - All platforms have the very same configuration; based on honeyd, each one implements 3 virtual machines
- Every day, tcpdump files are uploaded, enriched and stored into a centralized DB.
 - geographical location of the attackers, passive OS fingerprints of their machines, reverse name lookups, etc.

50 platforms in 30 different countries

In Europe

- Interested partner provides
 - An old PC (Pentium II, 256MB RAM, 233 MHz)
 - 4 unfiltered routable IP addresses
- The Project provides
 - Installation CD Rom containing OS + applications
 - Remote log collection and integrity checks
 - Access to the whole data set + wiki + various tools developed by the community (GUI, java applets, Matlab programs, alert ticketing system, etc.)

Clusters of traces

- Among the various treatments, one important one aims at grouping together attack traces likely due to the same attack tool.
- This is done thanks to a simple clustering algorithm that group together attack sessions (traces of 1 IP against 1 platform) that share the same fingerprints
- Fingerprints are defined by means of 7 groups of attributes

Attack fingerprints

- 1. Amount of targeted virtual machines,
- 2. Order in which they have been hit,
- 3. Amount of packets sent by the attacker to each virtual machine,
- 4. Sequence of ports,
- 5. Total amount of packets sent by the attacker,
- 6. Average IAT between packets received.
- 7. Duration of the attack.

Data used

 The experiments reported are based on the 4 years of collected data.

 They take advantage of the notion of clusters as defined and implemented by the project in the database available to all partners.

Overview

- Introduction
 - The Leurré.com project
 - Experimental framework
 - Experimental results
- Conclusions

Sanity Check

Question:

 Have we ever observed a clear manifestation of a metasploit related cluster in the Leurré.com data set?

Answer:

 Yes, for instance, on May 15 2006, the one implementing an exploit against the 'RealVNC password authentication bypass vulnerability' (realvnc_41_bypass)

Graphical Representation

Metasploit framework

- It is often referred to as the most popular vulnerability exploitation tool
- Its ease of use makes it the ideal tool for script kiddies
- For practical reasons, we restrict ourselves to all versions of the Metasploit framework within the release 2 (2.0-2.7) to analyze their impacts on our dataset.

- We have run all attacks from all Metasploit releases, one by one, against one of our platforms, in a dedicated environment.
- Traces have been recorded and labels
- Cluster attributes have been derived from these traces
- Matching clusters have been retrieved from the DB for further analysis.

Metasploit signature generation

Metasploit signature generation

Metasploit signature generation

Overview

- Introduction
 - The Leurré.com project
 - Experimental framework
 - Experimental results
- Conclusions

Initial Selection of Clusters

- 132 Metasploit modules used
- Running all of them in different ways, using various possible options, etc. led to 4000 distinct tpcdump files
- 19000 clusters (out of 150000) had their characteristics matching the ones of at least one of these files
- Clearly, we were selecting more than wanted!

Amount of exploits per cluster

Finding a few very "good" ones

Question:

- How to find which ones, among these 19000, are very likely to be related to a given Metasploit plugin?

Answer:

 Select only the clusters that have a substantial peak of activity very close to the plugin release date and no larger peak at any other point in time.

Algorithm 1

- For each of the 19000 selected clusters:
 - obtain the original plugin release date
 - compute the number of attacks, per day, observed for that cluster in the period ±30 days relative to the exploit release day
 - compute average (avg) and standard deviation (std) for the period
 ±30 days
 - If within a window of ± 5 days centered at day 0, we have an activity larger than avg + 2*std then select the cluster as a good candidate
- For each candidate, search for its maximal number of attacks over its whole lifetime. Discard the candidate, if this value does not appear within the period ±5 days around day 0.
- Result: 700 clusters remain

Activities around day 0 of original release

Refinment

Question:

– How can we see if "old plugin" are reused when a new general release of the environment is made public?

Answer:

 Repeat the same experiment but consider each release date for all clusters now instead of the sole original plugin release date.

Result:

- This leads us to find 1300 new matching clusters

Activities around day 0 of all releases

Analysis of burst at day -2

Analysis of burst at day -1

en Téléconnunicatio

nternational Science Linkages

Sanity Check

• Question:

- How many good clusters did we lose because of the constraint regarding the maximal peak value around ±5 days?

Answer:

 select all clusters which very first manifestation was observed in a window of ±2 days around any of the 8 possible release dates.

Result:

This leads us to find 80 new matching clusters

Activities of clusters unseen before day-2

Summing it up

Overview

- Introduction
 - The Leurré.com project
 - Experimental framework
 - Experimental results
- Conclusions

Conclusions

- Phenomena linked to Metasploit plugins releases have clearly been identified.
- Their amplitude is limited, as expected since we look at honeypots.
- Their mere existence as well as the shape of the curves tend to indicate that "script kiddies" tools are -also- used by well organized people.
- They are the ones predominantly observed in our dataset.

Further work

- Leurré.com V2.0 is about to be deployed:
 - based on Scriptgen (Eurecom, see ACSAC05, RAID06)
 - Enriched by Argos (VU Amsterdam), Anubis (TUVienna),
 Nepenthes (Manheim), Virustotal (Hispasec).
- It will offer much richer data under the same agreements.
- Downloads shellcode and malware and analyses them.
- You are welcome to participate.

- A 3 years EC funded research project (STREP)
- Starts on January 1st 2008
- Involves 11 partners
 - 3 industrial partners
 - 1 CERT
 - 5 academic partners (VU Amsterdam, Eurécom, FORTH, Politecnico Milano, TU Vienna)
 - 2 non EC partners

WOMBAT: technical tasks

 Task 1: Federation of of malware collection technique (existing and new ones such as Leurrecom honeyclient, wireless, etc..)

Task

April 2008

Task

by invitation Workshop for attack-related data producers/consumers.

Contact me if interested dacier@eurecom.fr

