

Management Advantages of Object Classification in RBAC

(Pages 96-110)

Mohammad Jafari

(m jafari@ind.iust.ac.ir)

Mohammad Fathian

(fathian@iust.ac.ir)

Department of Information Technology, Electronic Commerce, Iranian University of Science and Technology

Structure

- Object classification in the literature
- Formulating object classification
 - A conceptual look at RBAC
 - Three reference models
 - Access control policy components
 - Concrete and abstract entities
- Ease of management
 - Comparing the three models by using seven criteria

Three typical reference models

Trivial permission assignment model (TPA)

Plain RBAC model (P-RBAC)

Object-classification-enabled RBAC (OC-RBAC)

Trivial Permission Assignment Model

- Determine the access rights of every single subject to each object
- Example: Access matrix model
- Access control policy
 - Single component
 - System dependent

Plain RBAC

- Subjects are assigned roles
- Access rights of roles to objects are determined
- Two components in the access control policy
 - Subject-role assignment
 - Role-permission assignment
 - Permission: and operation practiced on an object

Object-classification-enabled RBAC

- Subjects are assigned roles
- Objects are classes (categories)
- Access rights of roles to objects classes are determined
- Three components in the access control policy
 - Subject-role assignment
 - Object-class assignment
 - Role-class access rights

Entities

- Subjects, Objects
 - Concrete and system-dependant
 - Example:
 - John
 - Perinter1, File1
- Roles, Categories (Object Classes)
 - Abstract and system-independent
 - Example:
 - Secretary
 - Secretary Printer, Financial Files
- Operations
 - System-independent

Design Rationale

- Removing dependency to system-specific entities by replacing them with abstract entities
 - Subject → Roles
 - − Objects → Categories (Object Classes)

Comparing the three models

Criteria

- Number and complexity of decisions
- Change management cost
- Risk of error
- Policy portability and reuse
- Enforcement and compliance
- Traditional information classification
- Object grouping and management

- Two types of decisions
 - Major decisions
 - Should be made by a security officer
 - Example:
 - Access rights of a user
 - Access rights of a role
 - Minor decision
 - Can be made by an operator
 - Example:
 - Role of new employee
 - Class of a new object

• TPA:

- Decide each triplet (subject, object, operation)
 - |S|*|O|*|Op| decisions
 - |Op|=constant, n=max(|S|, |O|)
 - \rightarrow O(n²) major decisions

P-RBAC:

- Major Policy
 - Decide each triplet (role, object, operation)
 - |R|*|O|*|Op| decisions
 - |Op|=constant, |R|=constant
 - → O(n) major decisions
- Minor Policies
 - Decide the roles of each subject
 - (subject, role) =0 or 1?
 - |S|*|R| decisions
 - |R|=constant
 - \rightarrow O(n) minor decisions

OC-RBAC:

- Major Policy
 - Decide each triplet (role, category, operation)
 - |R|*|C|*|Op| decisions
 - |Op|=constant, |R|=constant, |C|=constant
 - \rightarrow O(1) major decisions
- Minor Policies
 - Decide the roles of each subject
 - − → O(n) minor decisions
 - Decide the class of each object
 - (object, class) =0 or 1?
 - |O|*|C| decisions
 - |C|=constant
 - − → O(n) minor decisions
 - → 2*O(n) minor decisions

	TPA	P-RBAC	OC-RBAC
Number and Complexity of Decisions	M.O(n ²)	M.O(n) + m.O(n)	M.O(1) + m.O(n)

- Change in subject's access rights
 - TPA
 - Reviewing access rights of a the subject to all objects
 - |O| → O(n) major decisions
 - P-RBAC/OC-RBAC
 - A change in subject's role
 - $|R| \rightarrow O(1)$ minor decision
- Change in role's access rights
 - TPA
 - Reviewing access rights of a group of subjects to all objects
 - $|S||O| \rightarrow O(n^2)$ major decisions
 - P-RBAC
 - Reviewing access rights of a role to all objects
 - |R|*|O| → O(n) major decisions
 - OC-RBAC
 - Reviewing access rights of a role to all categories
 - O(1) major decisions

- Change in an object's access permissions
 - TPA
 - Reviewing access rights of all subject to the object in question
 - |S| → O(n) major decision
 - P-RBAC
 - Reviewing access rights of all roles to the object in question
 - |R| → O(1) major decisions
 - OC-RBAC
 - A change in the object's categories
 - $|C| \rightarrow O(1)$ minor decisions

- Change in access permissions of a category
 - TPA
 - Reviewing access rights of all subjects to a group of objects
 - $|S|^*|O| \rightarrow O(n^2)$ major decisions
 - P-RBAC
 - Reviewing access rights of all roles to a group of objects
 - |R|*|O|→O(n) major decisions
 - OC-RBAC
 - Reviewing access rights of all roles to the category in question
 - $|R|^*|C| \rightarrow O(1)$ major decisions
- Total change in some area
 - Similar to utter policy design in a subset of the system

Change Type	TPA	P-RBAC	OC-RBAC
Subject's access rights	M.O(n)	m.O(n)	m.O(n)
Role's access rights	M.O(n ²)	M.O(n)	M.O(1)
Object's access permissions	M.O(n)	M.O(1)	m.O(1)
Access permissions of a category	M.O(n ²)	M.O(n)	M.O(1)
Total change in some area	M.O(n ²)	M.O(n) + m.O(n)	M.O(1) + m.O(n)

Risk of Error

- Risk = Probability * Impact
- Major Decisions
 - Made by a manager
 - → More elaboration
 - − → Low probability
 - More profound consequences
 - → High impact
- Minor Decisions
 - Made by operator
 - Less elaboration
 - → High probability
 - Less severe consequences
 - → Lower impact

Risk of Error

• I.p : High-impact, less likely

• i.P : Low-impact, more likely

	TPA	P-RBAC	OC-RBAC
Risk of Error	I.p.O(n ²)	I.p.O(n) + i.P.O(n)	I.p.O(1) + i.P.O(n)

Policy Portability

- Less system dependency provides higher chance for portability
- TPA
 - tightly system-dependent
 - No chance for portability
- P-RBAC
 - Roles can be reused
 - Decide access rights of each role to each object
 - O(n) major decisions
 - Decide roles of each subject
 - O(n) minor decisions
- OC-RBAC
 - Both roles and categories can be reused
 - Decide roles of each subject and categories of each object
 - O(n) minor decisions

Other advantages

- Automatic enforcement and compliance-checking
 - Standard policies with standard roles and categories and standard access rights
- Support for traditional information classification policies
 - Object categories can be used to implement security labels
- Object management and grouping
 - Object classification provides a grouping mechanism for better management of objects

Summary

	TPA	P-RBAC	OC-RBAC
Number and Complexity of Decisions	M.O(n ²)	M.O(n) + m.O(n)	M.O(1) + m.O(n)
Change management cost (Detailed previously)	Poor	Good	Better
Risk of Error	I.p.O(n ²)	I.p.O(n) + i.P.O(n)	I.p.O(1) + i.P.O(n)
Policy portability and reuse	None	M.O(n)+m.O(n)	m.O(n)
Enforcement and compliance	None	Manual	Automated
Traditional classification policies	None	Complex	Trivial
Object grouping	Implementation -level	Implementation- level	Direct support from model

Conclusion

Limitations

- A real case study showing the benefits
- Neglecting role-engineering and category engineering practices

Future works

- Policy portability when multiple superior policies exist
- Policy portability when the acquiring system need to extend roles/categories while preserving compliance to the higher-level policy
- Practical value of "Category hierarchies" and "Separation of categories"