Compiling C Programs

into a Strongly Typed
Assembly Language

Takahiro Kosakai

Toshiyuki Maeda

Akinori Yonezawa
(Univ. of Tokyo)

» I
Brief Overview

m \WWe propose a method to guarantee
the memory safety of C programs:
Compile C programs into a typed
assembly language

m Our contribution:

1. Designed a typed assembly language
CTAL,

2. Implemented an experimental compiler
from C to CTAL,

» I
Outline

m Background

m Our Language: CTAL,

m I[mplementation of Compiler
m Related Work

m Conclusion & Future Work

" I
Outline

m Background

m Our Language: CTAL,

m I[mplementation of Compiler
m Related Work

m Conclusion & Future Work

" S
Background (1/2)

m C is a classic programming language
developed 35 years ago

m Even today, C is popular and a lot of
security-critical software is written in C
Almost all of operating systems
Web servers
etc...

" S
Background (2/2)

m However, C programs often have
memory-related bugs that can easily
lead to security vulnerabilities

Buffer overflow, dangling pointer,
double free, ...

m About 40% of recent Linux kernel
vulnerabilities are caused by
memory-related bugs [

[1] SecurityFocus vulnerability database, January - June 2007.

" SN
Why so many memory bugs?

m Because C is not a memory safe
language
E.g., No protection against out-of-bounds
array access
m array[i++] = 123;
s May cause buffer overflow

m Ensuring memory safety is a crucial
step for ensuring security of software

" S
Existing Work

m There are several schemes to certify
memory safety of C programs

m Two of such schemes are CCured 'l and
Fail-Safe C ¥l
Make C programs memory safe
by program transformations

» Inserting runtime bounds-checks, etfc.

[1] G.C.Necula et al., CCured: Type-safe retrofitting of legacy software,

TOPLAS '05.
[2] Y.Oiwa et al., Fail-safe ANSI-C compiler: An approach to making

C programs secure, |ISSS '02.

" BN
Problem with Existing Schemes

m [hey are source-to-source translators

Procedure for ensuring memory safety

1. Get source code of software

2. Apply the schemes to get certified source code
3. Compile it with conventional compiler (e.g., GCC)

(1) |SAFE]

C C Assembly
Program » Program » Program

r (2) r (3) p

" BN
Problem with Existing Schemes

m [hey are source-to-source translators

Procedure for ensuring memory safety

1. Get source code of software

2. Apply the schemes to get certified source code
3. Compile it with conventional compiler (e.g., GCC)

(1) |SAFE]

C C Assembly
Program » Program » Program

r (2) r (3) p

Problem with Existing Schemes

m They are source-to-

@

C
Program
4
N\

[SAFE]\

)

=

O,

C

N\

Program

Compiler may produce
unsafe assembly code.
We must trust it.

g

»

/4

Source code is n
often available.

B

®

Assembly
Program

/4

Our Approach

m Lower down the certification phase to

@

C

Program

/4

|SAFE

|

assembly-code level

)

=

O,

C

Program

/4

Users can verify the safety

e Without having source code

e Without trusting compilers

Assembly
Program

/4

\Y

Verify

" S
How to certify assembly code?

m We selected Typed Assembly Language
(TAL) "l as our starting point

m TAL is an assembly language
equipped with a strong static type system

Well-typed assembly programs are
memory safe

Certification of memory safety
can be done by simple type-checking

[1] G.Morrisett et al., From system F to typed assembly language, POPL "98.

" S
How to certify assembly code?

m TAL is not suitable for compiling from C
Its target is type-safe languages like ML

Operations that are not type-safe are not
considered

m \We propose an extension of TAL, called
CTAL,, which is aimed at C

It can handle lower-level issues such as
non-type-safe casts and NULL pointers

» I
Outline

m Background

m Our Language: CTAL,

m I[mplementation of Compiler
m Related Work

m Conclusion & Future Work

" S
A flavor of CTAL,

m Simple program named “inc” that

loops infinitely, incrementing the value of
register rl
Type annotation &
{inc — VY(z). code[rl: Int(z)] } Pseudo-instruction
i1nc: «
add rl, 1
apply inc,~(x —\x + 1)

Jmp inc
Ordinary assembly code

" SN
A flavor of CTAL,

Annotation of heap type

Meaning: “At address inc, there is
a value of type V(x). code[rl: Int(zx)]’

{inc — VY(x). code[rl: Int(x)] } \

1=
code[rl: Int(x)] denotes instruction sequences

that are executable if r1 has type Int(x)

Int(x) denotes integers whose value is
exactly equal to x

" SN
Type-Checking in CTAL, (1/5)

m [ype-checking proceeds by manipulating:
[' : Type of each register
Y : Type of each value in the heap

¢ : Valid logical formula over variables
{ inc — V(x). code[rl: Int(x)] }
inc:
add rl1l, 1
apply inc, (r —»xz+ 1)

Jmp inc

" S
Type-Checking in CTAL, (2/5)

m First, I', ¥, ¢ are initialized according to
the heap type annotation
I' =[x1: Int(x)]
VY ={inc — V(x). code[rl: Int(x)] }
¢ = True
{inc — V(x). code[rl: Int(x)] }
B inc:

add r1, 1
apply inc, (r —x+1)

Jjmp inc

" S
Type-Checking in CTAL, (3/5)

m \When checking add, I'(x1) is updated
so that it reflects the effect of add

[' =[rl: Int(z + 1)]
¥ ={inc — VY(z). code[rl: Int(z)] }

¢ = True
{inc — V(x). code[rl: Int(x)] }
inc:

Badd rl, 1
apply inc, (r —x+1)

Jmp inc

"
Type-Checking in CTAL, (4/5)

m Next apply pseudo-instruction instantiates
the polymorphic type of inc in ¥

[' =[rl: Int(x + 1)]
Y ={inc — code[rl: Int(x + 1)] }

¢ = True
{inc — V(x). code[rl: Int(x)] }
inc:
add rl, 1
»apply inc, (xr —ax+1)
Jmp inc

" SN
Type-Checking in CTAL, (5/5)

m [ype-checking jmp is to check the current
state matches the type of jump destination

[=[rl: Int(z + 1)] «<Match=0K
VY ={inc — code[rl: Int(x + 1)] }
¢ = True
{inc — V(x). code[rl: Int(x)] }
inc:
add r1, 1 This program
apply inc, (r —x* 1) successfully passes
® jmp inc the type-checking

" SN
Extensions to TAL

m Key extensions in CTAL, that make it
suitable for compiling from C
Two characteristic types

= Untyped array types: Array(z)
m Guarded types: ¢ ? 1, : 1,

Support of byte addressing

" S
Untyped Array Types (1/2)

m Motivation
How to deal with non-type-safe casts?

int arr[3];
((char *)arr) [2] = "A’;

arr is an array of int, but it is also
used as an array of char

Thus arr cannot have type “Array(int)”
In a strongly typed language

" SN
Untyped Array Types (2/2)

m Denotes “untyped” memory blocks

CTAL, type system imposes no restrictions
on their contents

Original TAL arrays are typed (all elements
must have uniform type)

m Can deal with non-type-safe casts

int arr[3];
((char *)arr) [2] = "A’;

arr can be an untyped array

" S
Guarded Types (1/2)

m Motivation
How to deal with NULL pointers?

R p — int ﬂ
This heap type means: “A value of type int

exists at address p”
We want to allow p to be NULL

" B
Guarded Types (2/2)

m Guarded type ¢ ? 1, : 1, IS ...
equal to type 1., if logical formula ¢ is true
equal to type t,, if logical formula ¢ is false

m Can represent “maybe-NULL" pointers

{p—>ﬁp1i:—'}(|))?int: () }

This heap type means: “If p is non-zero,
then an int value is at address p”

— i.e., p is either NULL or a pointer to int

" SN
Byte Addressing

m All bytes in memory blocks are accessible

Original TAL only considers word-size
access

This extension itself is straight-forward,
but slightly complicates formalization and
proof of language safety

" S
Formal Properties

m Well-typed CTAL, programs are ...
Memory safe
a Will never perform wrong memory accesses

Control-flow safe
= Will execute only valid instructions

» I
Outline

m Background

m Our Language: CTAL,

m Implementation of Compiler
m Related Work

m Conclusion & Future Work

Compiling Strategy

m It is iImpossible to directly compile

unsafe C programs into safe CTAL,

m Our compiler takes 2 steps
First, establish safety by source-level
program transformation

Then, compile it to CTAL,, preserving
the established safety

C

Program
7

=

[SAFE|

C »
Prog ramJ

CTAL,

Program
7

" B
Program Transformation

m Basically, insert bounds-checks before
every memory dereference operation

Program will abort before doing
wrong memory accesses

m To obtain correct bounds information for
each pointer, we add some meta-data
Using several techniques of Fail-Safe C]

[1] Y.Oiwa et al., Fail-safe ANSI-C compiler: An approach to making
C programs secure, ISSS '02

" S
Transformation: Step 1/ 3

m Extend each integer and pointer to

2 words Casts between integers
“Fat integer” and pointers are freely
possible

Integer . | Value

Pointer : Value ‘

. Meta-data Memory Block

Transformation: Step 2/ 3

m Attach to every memory block its length

Integer :

Pointer :

Bounds checks are now possible

Value

: Meta-data

Value ;

Memory Block

Transformation: Step 3/ 3

m Since integers are doubled in size,
memory blocks should also be doubled

Integer :

Pointer :

Value

: Meta-data

Value ;

Length

Memory Block

" S
Transformation: Step 3/ 3

m Since integers are doubled in size,
memory blocks should also be doubled

Integer . | Value 0
Semantics of C

can be preserved

Pointer : Value ;

Lengﬂ Memory Block

: Meta-data

Typing
m This structure can be typed in CTAL,

Integer :

Pointer :

Value

0

/

A

!
Value

Typed array type —"

Guarded type

A// (maybe-NULL pointer)

Untyped array type

\

| L_\“ Length
Ordinary Int type

Memory Block

5

" B
Supported Features

m Casts between integers and pointers
Using fat integers

m Arrays, structures, unions
By treating them as untyped arrays

m Function pointers

m Dynamic memory allocation (malloc)

" S
Preliminary Experiment

m \We have successfully compiled ...
Simple insertion sort program
glibc’s quick sort function
= Heavily uses function pointers
Huffman-code compressor
xvgif (GIF image decoding library)
m Successfully detected and prevented
a known buffer overflow bug

efc.

" I
Outline

m Background

m Our Language: CTAL,

m I[mplementation of Compiler
m Related Work

m Conclusion & Future Work

" I
Related Work

m CCured "l] Fail-Safe C 1%
Ensure memory safety of C programs
Good runtime performance

Source-to-source translators: there is
no safety guarantee on assembly code

[1] G.C.Necula et al., CCured: Type-safe retrofitting of legacy software,

TOPLAS '05.
[2] Y.Oiwa et al., Fail-safe ANSI-C compiler: An approach to making

C programs secure, |ISSS "02.

"
Related Work

m Typed Assembly Language !
Basis of our language CTAL,

Mainly aimed at compiling from ML-like
type-safe functional languages

m TALX86]
TAL for Intel IA-32 architecture

Mainly aimed at compiling from Popcorn
(an imperative, safe language)

[1] G.Morrisett et al., From system F to typed assembly language, POPL "98.
[2] G.Morrisett et al., TALx86: A realistic typed assembly language, WCSSS ‘99

» I
Outline

m Background

m Our Language: CTAL,

m I[mplementation of Compiler
m Related Work

m Conclusion & Future Work

» I
Conclusion

m \We have proposed a new typed assembly
language CTAL,, based on TAL

Guarantees memory safety at
assembly-code level

m \We have implemented an experimental
compiler from C to CTAL,

Supports free intermixing of integers and

pointers, arrays, structures, unions, and
function pointers

" S
Future Work

m Improve compiler implementation

Optimization and static analysis to remove
redundant dynamic checks

Binary compatibility with existing libraries

m Enrich CTAL,'s type system
Support explicit memory deallocation
Support linking of object files

Fin.

