
The Calculus Typing Encoding Conclusion

Static vs Dynamic Typing
for Access Control in Pi-Calculus

Michele Bugliesi
Damiano Macedonio

Sabina Rossi

Department of Informatics
University of Venice

Doha, December 11, 2007

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

The Process Calculus
Pi-calculus

Static and Dynamic Typing
Static Typing
Dynamic Typing
Static vs Dynamic, an Overview

The Encoding
Encoding Dynamic into Static
An Attempt
A Sound Encoding
A Complete Encoding

Conclusion

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Pi-calculus

Asynchronous Pi-calculus

Channels a, b, . . . , n, m, . . .

Processes P, Q, . . .

0 Inaction (νn :T)P Restriction
a〈ṽ〉 Output [u=v]P; Q Matching
a(x̃).P Input !P Replication
P | Q Composition

(OUTPUT) a〈v〉
a〈v〉
−−−→ 0

(INPUT) a(x).P
a(v)
−−−→ P {v/x }

(COMMUNICATION) P
a〈b〉
−−−→ P ′ Q

a(b)
−−−→ Q′

P | Q −−→ P ′ | Q′

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Static Typing

Static Typing in API [Hennessy-Rathke 2004]
Types define access rights on channels.

T , S ::= rw〈S̃; T̃ 〉 | r〈S̃〉 | w〈T̃ 〉 | > | X | µX .T

Subtyping: Higher types grant fewer access rights (<:)

Intention:
I Control interaction with types (based on access rights).
I Control propagation of access rights.

Formalisation: Typed Labelled Transitions

I B P
α

−−→ I ′ B P ′

I I constraints the behaviour of contexts for P.
I P is well typed in a (more precise) Γ <: I.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Static Typing

Access Rights Propagation

Interaction determines how access rights are propagated

(API-OUTPUT)
I r(a) ↓

I B a〈v〉
a〈v〉
−−−→ I, v : I r(a) B 0

(API-INPUT)
Iw(a) ↓ I ` v : Iw(a)

I B a(x).P
a(v)
−−−→ I B P {v/x }

Behavioural Equivalence:
Based on this formalisation I |= P ≈ Q

I matters! For instance a : w〈〉 |= a〈〉 ≈ 0

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Dynamic Typing

Typed Processes in Untyped Contexts
In establishing I |= P ≈ Q we assume

I contexts have knowledge I
I contexts are well typed (statically)

Types are very informative ⇒ strong control on behaviour.

If we drop well typing, then everything falls apart.

Idea: Use simpler types. Only Top-Level capabilities.
I Well typing provides looser control
I Easier to enforce with type coercion: a〈v@A〉 and a(x@A)

I A completely different interaction.
I Processes are still in control with much simpler assumptions

on contexts.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Dynamic Typing

Typed Processes in Untyped Contexts
In establishing I |= P ≈ Q we assume

I contexts have knowledge I
I contexts are well typed (statically)

Types are very informative ⇒ strong control on behaviour.

If we drop well typing, then everything falls apart.

Idea: Use simpler types. Only Top-Level capabilities.
I Well typing provides looser control
I Easier to enforce with type coercion: a〈v@A〉 and a(x@A)

I A completely different interaction.
I Processes are still in control with much simpler assumptions

on contexts.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Dynamic Typing

Dynamic Typing in API@ [Bugliesi-Giunti 2005]

Processes
P, Q ::= 0 | a〈ṽ@Ã〉 | a(x̃@Ã).P | P|Q | (νn :T)P | [u=v]P; Q |!P

Types
A, B ::= rw | r | w | >

Still statically typed
Γ(a) <: w Γ ` v : A

Γ ` a〈v@A〉 : X

Γ(a) <: r Γ, x : A ` P : X

Γ ` a(x@A).P : X

Plus dynamically typed synchronisation

P
a〈b@A〉
−−−−−→ P ′ Q

a(b@B)
−−−−−→ Q′ A <: B

P | Q −−→ P ′ | Q′

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Dynamic Typing

Access Rights Propagation in API@

The sender determines how access rights are propagated

(API@-OUTPUT)
I r(a) ↓ A <: B

I B a〈v@A〉
a〈v@B〉
−−−−−→ I, v : B B 0

(API-INPUT)
Iw(a) ↓ I ` v : B B <: A

I B a(x@A).P
a(v@B)
−−−−→ I B P {v/x }

Behavioural Equivalence:
Based on this formalisation I |= P ≈@ Q

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Dynamic Typing

Implementation

I API@ serves the purpose of studying the behaviour of
typed processes in un-typed contexts

I In [POPL’07] Bugliesi-Giunti defined an implementation of
API@ as an encoding [[]] : API@ −→ Appliedπ

I Main result: I |= P ≈@ Q if and only if [[I]] |= [[P]] ≈Aπ [[Q]]
Idea:

I Translate types of API@ into crypto-keys that give access to
communication channels.

I Use cryptography to control propagation in a way that
mimics the propagation in API@.

I Equivalences in Appliedπ are established in environments
with knowledge of certain keys (those that correspond to the
types in API@).

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Static vs Dynamic

Dynamic Typing vs Static Typing

Which is the relationship between API and API@?

I Current results:

[[]]1 : API −→ API@ sound and divergence free
[[a〈v〉]]Γ def

= a〈v@|Γw(a)|〉
[[a(x).P]]Γ def

= a(x@|Γr(a)|).[[P]]Γ,x :Γr(a)

[[]]2 : API@ −→ API sound and complete, but divergent

I Under “appropriate” hypothesis we can also show that
I No encoding API → API@ can be sound and complete.
I No encoding API@ → API can be divergence free.

... but the “appropriate” hypothesis are currently too strong
to make these negative results interesting.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Encoding Dynamic into Static

The Encoding

[[]] : (monadic)API@ −→ (poliadic)API

The encoding is defined in terms of two related, but
independent mappings.

I The encoding of processes maps typing judgments in API@
to processes of API.

I The encoding of type environments maps capabilities
(types) of the observing API@ contexts into the
corresponding capabilities of API contexts.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

An Attempt

First Attempt
I We associate every API@-name n

with a tuple of API-names n = (nrw, nr, nw, n>)

I A synchronisation on n at type B in API@
can be seen as a synchronisation on nB in API.

I Being more precise: inputs (outputs) at type B can
synchronise at a type which is lower (upper) than B.

I Then we may think at the following encoding:

Output [[n〈a@A〉]] def
= nA〈n〉

Input [[n(x@A).P]] def
=

∑
B<:A nB(x).[[P]]

I Now we only have to compose this idea with the encoding
of input guarded choice in the asynchronous Pi-calculus.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

An Attempt

Encoding Guarded Choice
∑

B<:A nB(x).[[P]]
[Nestmann-Pierce 2000]

I Each branch of the sum is represented by a parallel branch.
I All the parallel branches run a mutual exclusion protocol,
installing a local lock.
I All the parallel branches try to consume an output. They test
the lock after reading a message from the environment.
I Each branch can black out and return to its initial state after
it has taken the lock, just by re-sending the message.
I Just one branch will proceed with its continuation and
thereby commit the input.
I Every other branch will then be forced to re-send the
message and abort its continuation.

It looks good, but... it does not work!
All the readers must also be given the w-rights on the channel.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

An Attempt

Encoding Guarded Choice
∑

B<:A nB(x).[[P]]
[Nestmann-Pierce 2000]

I Each branch of the sum is represented by a parallel branch.
I All the parallel branches run a mutual exclusion protocol,
installing a local lock.
I All the parallel branches try to consume an output. They test
the lock after reading a message from the environment.
I Each branch can black out and return to its initial state after
it has taken the lock, just by re-sending the message.
I Just one branch will proceed with its continuation and
thereby commit the input.
I Every other branch will then be forced to re-send the
message and abort its continuation.
It looks good, but...

it does not work!
All the readers must also be given the w-rights on the channel.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

An Attempt

Encoding Guarded Choice
∑

B<:A nB(x).[[P]]
[Nestmann-Pierce 2000]

I Each branch of the sum is represented by a parallel branch.
I All the parallel branches run a mutual exclusion protocol,
installing a local lock.
I All the parallel branches try to consume an output. They test
the lock after reading a message from the environment.
I Each branch can black out and return to its initial state after
it has taken the lock, just by re-sending the message.
I Just one branch will proceed with its continuation and
thereby commit the input.
I Every other branch will then be forced to re-send the
message and abort its continuation.
It looks good, but... it does not work!
All the readers must also be given the w-rights on the channel.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Sound Encoding

Fixing the Typing Problem
I Every API@ channel n is associated to a process CHAN(n) that
mediates between inputs and outputs.
I Each exchange on n in API@ corresponds to running two
separate protocols.

I Input. A process willing to input on n at type A sends a read
request (in the form of a private name) on the name nr@A.

I Output. A process willing to output on n at type A sends its
output on nw@A.

I Collectively, each name n from API@ is thus translated into
the 8-tuple n = (nR, nW), where

nR = nr@rw, nr@r, nr@w, nr@>
nW = nw@rw, nw@r, nw@w, nw@>

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Sound Encoding

Encoding of Processes
Channel Servers

CHAN(n) def
=

∏
A∈{rw,r,w,>} !nr@A(h).CHOOSE(n, A, h)

CHOOSE(n, A, h) def
= (ν l : rw〈>〉)

(
l〈t〉 |

∏
B<:A !READl

〈
nw@B(z).h〈z〉

〉)
Clients

{|0 |} def
= 0

{|u〈v@A〉 |} def
= uw@A〈v〉

{|u(x@A).P |} def
= (νh : rw〈TA〉) (ur@A〈h〉 |h(x).{|P |})

{|P |Q |} def
= {|P |} |{|Q |}

{| (νa :A)P |} def
= (νa :S) ({|P |} |CHAN(a))

{| [u=v]P; Q |} def
= [ur@r =vr@r]{|P |}; {|Q |}

{| !P |} def
= !{|P |}

Complete Systems
{|P|}Γ

def
= {|P |} |

∏
a∈dom(Γ)CHAN(a)

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Sound Encoding

Encoding of Types
I A read capability on n in API@ corresponds in API to a write
capability on all the names in nR.
I A write capability on n in API@ corresponds to a write
capability on the names nW.
I With each type A in API@ we associate a corresponding
tuple of types TA

Client Types
Trw

def
= (R, W) Tr

def
= (R,>) Tw

def
= (>, W) T>

def
= (>,>)

R def
= (T r@rw, T r@r, T r@rw, T r@>) W def

= (T w@rw, T w@r, T w@rw, T w@>)

T r@rw
def
= w〈w〈R, W〉〉 T w@rw

def
= w〈R, W〉

T r@r
def
= w〈w〈R,>〉〉 T w@r

def
= w〈R,>〉

T r@w
def
= w〈w〈>, W〉〉 T w@w

def
= w〈>, W〉

T r@>
def
= w〈w〈>,>〉〉 T w@>

def
= w〈>,>〉

Type Environments
{| ∅ |} def

= t : >, f : > {| Γ, v : A |} def
= {| Γ |}, (v) : TA

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Sound Encoding

Soundness
Theorem (Typing and Subtyping Preservation)
For all types A, B in API@, A <: B implies TA <: TB in API.
Furthermore, whenever Γ ` P in API@,
then there exists Γ′ <: {| Γ |} such that Γ′ ` {|P|}Γ in API.

Theorem (Soundness)
Let Γ <: I and Γ′ <: I be two type environments such that Γ ` P
and Γ′ ` Q in API@.
Then {| I |} |= {|P|}Γ ≈ {|Q|}Γ′ implies I |= P ≈@ Q.

The converse direction does not hold!
The properties of the communication protocols are based on
certain invariants that are verified by the names and the
channel servers allocated by the encoding, but may fail for the
names created dynamically by the context.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Sound Encoding

Soundness
Theorem (Typing and Subtyping Preservation)
For all types A, B in API@, A <: B implies TA <: TB in API.
Furthermore, whenever Γ ` P in API@,
then there exists Γ′ <: {| Γ |} such that Γ′ ` {|P|}Γ in API.

Theorem (Soundness)
Let Γ <: I and Γ′ <: I be two type environments such that Γ ` P
and Γ′ ` Q in API@.
Then {| I |} |= {|P|}Γ ≈ {|Q|}Γ′ implies I |= P ≈@ Q.

The converse direction does not hold!

The properties of the communication protocols are based on
certain invariants that are verified by the names and the
channel servers allocated by the encoding, but may fail for the
names created dynamically by the context.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Sound Encoding

Soundness
Theorem (Typing and Subtyping Preservation)
For all types A, B in API@, A <: B implies TA <: TB in API.
Furthermore, whenever Γ ` P in API@,
then there exists Γ′ <: {| Γ |} such that Γ′ ` {|P|}Γ in API.

Theorem (Soundness)
Let Γ <: I and Γ′ <: I be two type environments such that Γ ` P
and Γ′ ` Q in API@.
Then {| I |} |= {|P|}Γ ≈ {|Q|}Γ′ implies I |= P ≈@ Q.

The converse direction does not hold!
The properties of the communication protocols are based on
certain invariants that are verified by the names and the
channel servers allocated by the encoding, but may fail for the
names created dynamically by the context.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Complete Encoding

How to Recover Full Abstraction (Just an Idea)
I We need to protect the clients generated by the encoding
from direct interactions on context generated names.

I We relies on a PROXY service to filter the interactions between
channel servers, clients and the context.
I The PROXY introduces a separation between client names
and the corresponding proxy names.
I The PROXY maintains an association map between client and
server names.
I Read and write protocols:
they follow the same rationale as in the previous encoding, but
a client must obtain the access to the system channel with a
request to PROXY before starting the protocols.
I Interaction between clients and PROXY:
the client presents a name to the PROXY,
the PROXY replies with the corresponding server name.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Complete Encoding

How to Recover Full Abstraction (Just an Idea)
I We need to protect the clients generated by the encoding
from direct interactions on context generated names.
I We relies on a PROXY service to filter the interactions between
channel servers, clients and the context.

I The PROXY introduces a separation between client names
and the corresponding proxy names.
I The PROXY maintains an association map between client and
server names.
I Read and write protocols:
they follow the same rationale as in the previous encoding, but
a client must obtain the access to the system channel with a
request to PROXY before starting the protocols.
I Interaction between clients and PROXY:
the client presents a name to the PROXY,
the PROXY replies with the corresponding server name.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Complete Encoding

How to Recover Full Abstraction (Just an Idea)
I We need to protect the clients generated by the encoding
from direct interactions on context generated names.
I We relies on a PROXY service to filter the interactions between
channel servers, clients and the context.
I The PROXY introduces a separation between client names
and the corresponding proxy names.

I The PROXY maintains an association map between client and
server names.
I Read and write protocols:
they follow the same rationale as in the previous encoding, but
a client must obtain the access to the system channel with a
request to PROXY before starting the protocols.
I Interaction between clients and PROXY:
the client presents a name to the PROXY,
the PROXY replies with the corresponding server name.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Complete Encoding

How to Recover Full Abstraction (Just an Idea)
I We need to protect the clients generated by the encoding
from direct interactions on context generated names.
I We relies on a PROXY service to filter the interactions between
channel servers, clients and the context.
I The PROXY introduces a separation between client names
and the corresponding proxy names.
I The PROXY maintains an association map between client and
server names.

I Read and write protocols:
they follow the same rationale as in the previous encoding, but
a client must obtain the access to the system channel with a
request to PROXY before starting the protocols.
I Interaction between clients and PROXY:
the client presents a name to the PROXY,
the PROXY replies with the corresponding server name.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Complete Encoding

How to Recover Full Abstraction (Just an Idea)
I We need to protect the clients generated by the encoding
from direct interactions on context generated names.
I We relies on a PROXY service to filter the interactions between
channel servers, clients and the context.
I The PROXY introduces a separation between client names
and the corresponding proxy names.
I The PROXY maintains an association map between client and
server names.
I Read and write protocols:
they follow the same rationale as in the previous encoding, but
a client must obtain the access to the system channel with a
request to PROXY before starting the protocols.

I Interaction between clients and PROXY:
the client presents a name to the PROXY,
the PROXY replies with the corresponding server name.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Complete Encoding

How to Recover Full Abstraction (Just an Idea)
I We need to protect the clients generated by the encoding
from direct interactions on context generated names.
I We relies on a PROXY service to filter the interactions between
channel servers, clients and the context.
I The PROXY introduces a separation between client names
and the corresponding proxy names.
I The PROXY maintains an association map between client and
server names.
I Read and write protocols:
they follow the same rationale as in the previous encoding, but
a client must obtain the access to the system channel with a
request to PROXY before starting the protocols.
I Interaction between clients and PROXY:
the client presents a name to the PROXY,
the PROXY replies with the corresponding server name.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

The Calculus Typing Encoding Conclusion

Conclusion
I We have given a fully abstract encoding of (monadic)API@

into (poliadic)API with recursive types.
I The same technique would work for the polyadic calculus,

as long as we can count on a finite bound on the maximal
arity.

I We could do without recursive types in API by assuming a
finite bound on the number of cascading re-transmission
via other names.

I The encoding shows how the dynamically typed
synchronization of API@ may be simulated by a
combination of untyped synchronizations on suitably
designed channels, and it allows us to identify precisely the
subclass of the static types of API that correspond to the
dynamic types of API@.

Static vs Dynamic Typing M. Bugliesi, D. Macedonio, S. Rossi

	The Process Calculus
	Pi-calculus

	Static and Dynamic Typing
	Static Typing
	Dynamic Typing
	Static vs Dynamic, an Overview

	The Encoding
	Encoding Dynamic into Static
	An Attempt
	A Sound Encoding
	A Complete Encoding

	Conclusion

