

Privacy Enhancing Credential

National Institute of

Information and Communications Technology (Japan)

Junji Nakazato Lihua Wang Akihiro Yamamura

Motivation

lational Institute on formation and communications

Motivation

Disadvantages of SSO

- The same ticket is used for multiple services
- The user's privacy is obtained by the collusion with services
 - Use frequency of service
 - An order of using service
- The user can transfer ticket to another user

Needs to think about privacy!!

ational Institute of formation and ommunications chnology

Our goal

Multiple logins are not needed

- The user only presents credential of whether he has the right to access service
- User's privacy is concealed
 - The user can access services with anonymity
- Credential cannot be transferred to anyone
 - No one can transfer correct credential to others
- Authenticated key exchange
 - To provide secure channel between user and service provider

Try to apply "credential system"

Our goal

Credential system

Previous work

- "Designated Group Credentials"
- Ching Yu Ng, Willy Susilo, Yi Mu
- ASIACCS 2006
- Using pairing technique
- Authority can designate the verifiers
 - Ticket issuer can designate the service providers
- The user authentication is necessary for the outside
- The authority can trace user's movement
- The user can transfer correct credential to others

Comparison of requirements

	Group credential [4]	Our proposal
Unforgeability	Yes	Yes
Designated	Yes	Yes
Non-transferability	No	Yes
Anonymity	No	Yes
Unlinkability	No	Yes

Technique

Based on pairing

- Bilinear: Given any Q, R in G_1 and a, b in Z_q , we have $e(aQ, bR) = e(Q, R)^{ab}$
- Non-degenerate: $e(P, P) \neq 1$

Computable: There is an efficient algorithm to compute e(Q, R) for any Q, R in G_1

Non-transferability

private key of user is included in the credential

Unlinkability

Randomize credential when he uses it

- Propose privacy enhancing credential
 - We preserved unlinkability (anonymity).
 - We satisfied non-transferability.
 - We achieved authenticated key exchange.
- ◆We can provide time restriction function
 It can be achieved by a few modification.
 Change generator *F* to h(*t*)
 h() : hash function (h(*) → G₁)

Nanks

NICT 独立行政法人 情報通信研究機構

National Institute of Information and Communications Technology

