roSec
8 Dimensions of Declassification
in Theory and Practice

Andrei Sabelfeld
Chalmers

partly based on joint work with
A. Askarov and D. Sands

ASIAN'07, Dec. 2007

A scenario: free service
software

Users freely download and
use the software providing
a service:

o Grokster, Kazaa,
Morpheus,... are file-
sharing services helping
users exchange files

e Come with “hooks” for
automatic updates

e Support advertisement
to justify cost

Real story: malware

Users are tricked to download
software bundled with:

X

%
Aﬂ“m

Homepage/search hijackers
(MySearch)

Unsolicited pop-up ads
Rewriting URLs to override
original ads with own

“Hooks"” for automatic updates are used to execute
the advertiser’s arbitrary code (MediaUpdate,
DownlLoadware)

Information gathering—uvisited URLs and filled forms
are forwarded to a third-party (Gator, IPInsight,
Transponder)

Trac ka

p2p Technolody

General problem: malicious
and/or buggy code is a threat

e Trends in software
— mobile code, executable content
— platform-independence
— extensibility

e These trends are attackers’ opportunities!
— easy to distribute worms, viruses, exploits, ...
— write (an attack) once, run everywhere
— systems are vulnerable to undesirable

modifications

e Need to keep the trends without
compromising information security

Need for language-based security

e Looking under the street light...
Common attacker model:
— eavesdropping on network
— modifying network traffic
— trusted communication endpoints

= cryptographic protection of communication

o ...for a key that lies somewhere else!
Real story [CERT]: Most attacks are

— remote penetrations (buffer overruns, format
strings, RPC vulnerabilities,...)

— malware (viruses, worms, DDoS slaves,...)
= need protection at application/language Ievel5

Information security:
confidentiality

Confidentiality: sensitive information must not
be leaked by computation (non-example:
spyware attacks)

End-to-end confidentiality: there is no
insecure information flow through the system

Standard security mechanisms provide no
end-to-end guarantees

— Security policies too low-level (legacy of OS-based
security mechanisms)

— Programs treated as black boxes

Confidentiality: standard
security mechanisms

Access control

+prevents “unauthorized” release of information
- but what process should be authorized?
Firewalls

+permit selected communication

- permitted communication might be harmful
Encryption

+secures a communication channel

- even if properly used, endpoints of
communication may leak data 7

Confidentiality: standard
security mechanisms

Antivirus scanning

+rejects a “black list” of known attacks

- but doesn’t prevent new attacks

Digital signatures

+help identify code producer

- N0 security policy or security proof guaranteed
Sandboxing/OS-based monitoring

+good for low-level events (such as read a file)

- programs treated as black boxes

= Useful building blocks but no end-to-end
security guarantee 5

Confidentiality: language-
based approach

o Counter application-level attacks at the level of
a programming language—Ilook inside the black
box! Immediate benefits:

e Semantics-based security specification
— End-to-end security policies
— Powerful techniques for reasoning about
semantics
e Security enforcement
— Analysis enforcing end-to-end security

— Track information flow via, e.g., security types

e Type checking by the compiler removes
run-time overhead

Dynamic security enforcement

Java’s sandbox, OS-based monitoring,
and Mandatory Access Control dynamically
enforce security policies; But:

@igh(secretﬁh_f"-; | implicit flow
__|:=false; %Kfrom htol

_ if h then |:=true
[Iow(publlc) else skip

Problem: monitoring a single execution path
is not enough! "

Static certification

e Only run programs which can be
statically verified as secure before
running them

e Static certification for inclusion in a
compiler [Denning & Denning'77]

e More precise implicit flow analysis

e Enforcement by static analysis (e.q.,
security-type systems)

11

Confidentiality: preventing

information leaks J—

e Untrusted/buggy code should not ~—
leak sensitive information o

ke A
e But some applications depend on info
iIntended information leaks

— password checking
— information purchase
— spreadsheet computation

e Some leaks must be allowed: need
information release (or declassification)

12

Confidentiality vs. intended leaks

Y
e Allowing leaks might —

compromise confidentiality R —
e Noninterference is violated nfg

e How do we know secrets

are not laundered ©
via release mechanisms? -

e Need for security assurance ﬁ@
for programs with release s

13

State-of-the-art

O conditioned
Orelaxed noninterference
noninterference

Oadmissibility Orobust

declassification
O harmless flows O partial security O intransitive
O delimited noninterference
Orelative secrecy release
o selective O conditional
flows noninterference O abstract

noninterference
o noninterference

.) tational
quantitative “until” Ocompu
security security

O admissibility
O constrained O approximate
noninterference noninterference

14

“who” | Dimensions of release

O conditioned
Orelaxed noninterference
noninterference

Oadmissibility . Orobust
7 ® declassification

O harmlessjflows O partial security P4 Ointransitive
— o = = — Helimited noninterference

Orelative secrecy release

|
o selective O conditional
flows noninterference | O abstract
, | noninterference
noninterference :
security QU

O admissibility 1

strained O approximate
noninterference noninterference

“What"

15

Principles of release
*Who"

@ conditioned
@ relaxed noninterference
noninterference

@ admissibility . @ robust
declassification

O harmlesgflows O partial security p 4 O intransitive
Aelimited Noninterference

@ relative secrecy release

® COnse rvat|V|ty o Selective O conditional I
flows noninterference I O abstract
T~ noninterference
¢ MonOton ICIty o noninterference ional W e
o duantitative “until” | © ggg&eiutatlona Where

e Non-occlusion -~ security

O non-disclosure l

@ gMstrained @ approximate
noninterference noninterference

“"Wha

16

What

e Noninterference [Goguen & Meseguer]: as high input
varied, low-level outputs unchanged

h1—> —»h’ — —»h’

1 2 2

| — — | — —

o Selective (partial) flow

— Noninterference within high sub-domains [Cohen'78, Joshi &
Leino’00]

— Equivalence-relations view [Sabelfeld & Sands'01]
— Abstract noninterference [Giacobazzi & Mastroeni’04,'05]
— Delimited release [Sabelfeld & Myers'04]

e Quantitative information flow [Denning’82, Clark et al.’02,
Lowe'02]

17

Security lattice and
noninterference - H

Security lattice: e.g.:

1 L

Noninterference: flow from [to |’ allowed
when L C

18

Noninterference

e Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

/4

2

| — — | — —

h1—> —»h — —»h

e Language-based noninterference for c:

Mi=, M, & (My,c) U M} & (M,,c) U M, = M’ =

L
egnvamn?mory Conflguratlo
M, =, M, iff M,|,=M,|, with ™, and :

Average salary

e Intention: release average

avg:=declassify((h;+...+h.)/n,low);

e Flatly rejected by noninterference

e If accepting, how do we know declassify does
not release more than intended?

e Essence of the problem: what is released?

e "Only declassified data and no further
information”

o Expressions under declassify: “escape hatches”

20

Delimited release

[Sabelfeld & Myers, ISSS'03] if M, and M, are
. indistinguishable
e Command c has expressions through all e....

declassify(e,L); c is secure if:

M= M, & (M 0) U M/, S(M,,0) U M7, &
vi .eval(M;,e)=eval(M,,e,) =

M’y = M5
= security _ \ﬁthen the entire
e For programs with no program may not
declassification: Qstinguish M, and M,

Security = noninterference

21

Average salary revisited

e Accepted by delimited release:

avg:=declassify((h;+...+h_)/n,low);

temp:=h;; hy:=h,; hy,:=temp;
avg:=declassify((h;+...+h_)/n,low);

e Laundering attack rejected:

h,:=hy;...; h,:=hy;

~| avg:=h;

avg:=declassify((h;+...+h)/n,low);

22

Who

e Robust declassification in a Ianguage setting
[Myers, Sabelfeld & Zdancewic’04/0

e Command c[e] has robustness if
Wa’. (My,c[a]) =~ (M,,c[a]) =
attacks (My,cl[a’]) = (M,,cla’])

o If a cannot distinguish bet. M, and M, through c
then no other a’ can distinguish bet. fVI and M,

23

Robust declassification: examples

o Flatly rejected by noninterference, but
secure programs satisfy robustness:

[e]; X, ,:=declassify(y,.,LH)

e Insecure program:

Yy, - =declassify(z,.,LH)

[e]; if X, then y,, :=declassify(z.,,LH)

IS rejected by robustness

24

Enforcing robustness

e Security typing
for declassification:

C context
must be data must
high- be high-
. integrity) integrity

LHFe: HH
LH + declassify(e,l): LH

25

Where

e Intransitive (non)interference

—assurance for intransitive flow
[Rushby92, Pinsky’95, Roscoe & Goldsmith99]

—nondeterministic systems [Mantel'01]
—concurrent systems [Mantel & Sands'04]

—to be declassified data must pass a

downgrader [Ryan & Schneider’99, Mullins’00,
Dam & Giambiagi’'00, Bossi et al.’04, Echahed &
Prost’05, Almeida Matos & Boudol’05]

26

When

e Time-complexity based attacker

— password matching [Volpano & Smith’00] and one-way
functions [Volpano’00]

— poly-time process calculi [Lincoln et al.’98, Mitchell’'01]
— impact on encryption [Laud’01,’03]

e Probabilistic attacker [DiPierro et al.’02, Backes &
Pfitzmann’03]

o Relative: specification-bound attacker [pam &
Giambiagi'00,’03]

e Non-interference “until” [Chong & Myers'04]

27

Principle I

Semantic consistency

The (in)security of a program is invariant under
semantics-preserving transformations of
declassification-free subprograms

e Aid in modular design

e "What"” definitions generally
semantically consistent

e Uncovers semantic anomalies

28

Princi ple 11 Conservativity

Security for programs with no declassification is
equivalent to noninterference

e Straightforward to enforce (by
definition); nevertheless:

e Noninterference “until” rejects

if h>h then [:=0

29

Pri nCi ple III Monotonicity of release

Adding further declassifications to a secure program
cannot render it insecure

e Or, equivalently, an insecure program
cannot be made secure by removing
declassification annotations

e "Where”: intransitive noninterference (a
la M&S) fails it; declassification actions
are observable

if h then declassify(l=1) else |=I

30

Principle IV

Occlusion

The presence of a declassification operation cannot
mask other covert declassifications

31

Checking the principles

What
Semantic g Monotonici Mon-
ropere consistency CBnper/e Y of rele asew occlusion
Partial release [Coh78, JLOO, $501, GM04, GMO3] v v NIA J
Delimited release [SMO4] v v v v
Relaxed noninterference [LZ05a] b v v v
Naive release v v v X
Who
Robust declassification [MSZ04] Ve v v v
Cualified robust declassification [MSZ04] v v v b
Where
Intransitive noninerference S04 [/ 3 /
When
Admissibility [DG00, GDO3] * v . v
Noninterference “until” [CMO4] X = v v
Typeless noninterference “until™ W v X X

Y Semantic anomalies

Declassification in practice:

A case study
[Askarov & Sabelfeld, ESORICS'05]

e Use of security-typed languages for
implementation of crypto protocols

e Mental Poker protocol by [Roca et.al, 2003]

— Environment of mutual distrust %
— Efficient

e Jif language [Myers et al., 1999-2005]
— Java extension with security types 5
— Decentralized Label Model -
— Support for declassification 10

e Largest code written in security-typed
language up to publ date [~4500 LOC] s

Security assurance/Declassification

Group Pt. What Who Where
1 Public key for signature Anyone | Initialization
I 2 Public security parameter Player | Initialization
3 Message signature Player |Sending msg

II 4-7 | Protocol initialization data | Player | Initialization
8- Encrypted permuted card Player |Card

10 drawing
111 11 | Decryption flag Player |Card
drawing

12- | Player’s secret encryption |Player | Verification

IV |13 |key Player | Verification
14 | Player’s secret permutation

Group | — naturally public data Group Il — required by crypto protocol

Group Il — success flag pattern Group IV — revealing keys for verification
34

Conclusion

Road map of information release in
programs

Step towards policy perimeter
defense: to protect along each
dimension

Prudent principles of
declassification (uncovering
previously unnoticed anomalies)

Need for declassification framework A
for relation and combination along
the dimensions

35

End of talk

36

