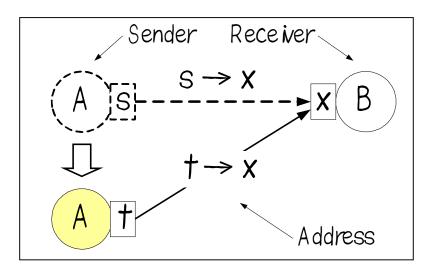
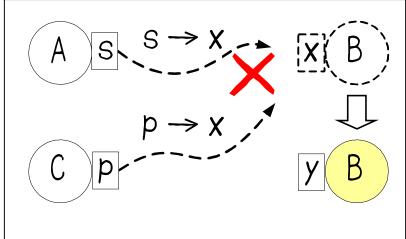
One-time receiver address in IPv6 for protecting unlinkability

Atsushi Sakurai, Takashi Minohara, Ryota Sato and Keisuke Mizutani

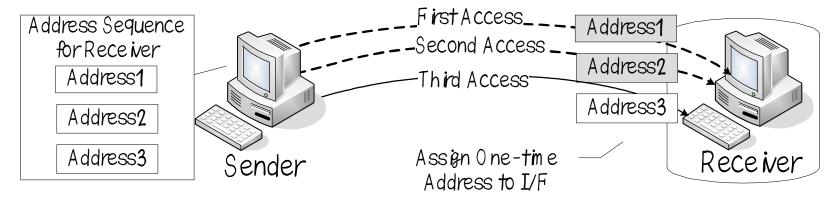
ASIAN'07


Background


- Privacy is one of the most desirable properties in the Internet communication.
 - Many encryption methods, for example IPsec, PGP and so on, are proposed for protecting privacy in message contents.
 - However, it is difficult to protect address of the message, because it is necessary to deliver the message.
 - It is important to protect privacy in message address.
- We focus on the unlinkability of the Internet address
 - An eavesdropper cannot distinguish whether two or more messages are sent from or sent to the same node.

Changing addresses for unlinkability

 To protect unlinkability, one cannot use the same address for long time.

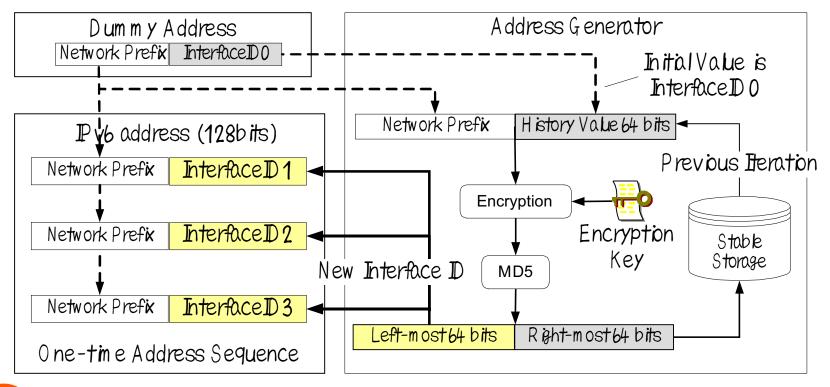


- Sender may change its address.
 - RFC3041: "Privacy extensions for stateless address autoconfiguration in IPv6"
- Changing receiver address is not easy because sender need to know the receiver's new address before initiating a communication.

Unlinkability in receiver addresses

- One-time receiver address for unlinkability
 - Receiver frequently changes its address one after another.
 - Proper senders can only follow the change.
 - Those addresses are kept from being linked by the third persons.
- Shared a secret sequence of addresses
 - Each pair of sender and receiver shares a secret sequence of addresses.

 This scheme requires a large address space, and we limit our target to the IPv6

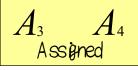

Sharing a secret address sequence

- We assume unlinkability in a receiver address is basically required for a kind of closed community like a friend to friend network.
 - The number of potential senders is limited.
 - Sender and receiver can share a secret encryption key by the method of Diffie-Hellman.
- Receiver generates a sequence of addresses for each potential sender by using the different encryption key.
- Sender independently generates the identical sequence of addresses with the encryption key.

Generation of an address sequence

- Receiver registers a dummy address to public server as a seed of sequence, and sender obtains it.
- The first I/F ID is generated from the dummy address by encryption and calculation of MD5 value.
- And following addresses are generated from the stored value of previous iteration.

On demand assignment of addresses


$$A_{\mathrm{l}}$$
 Remove

$$A_2$$
 A_3 Assigned

$$\overline{A}_4$$
Assign

 A_5

 A_6

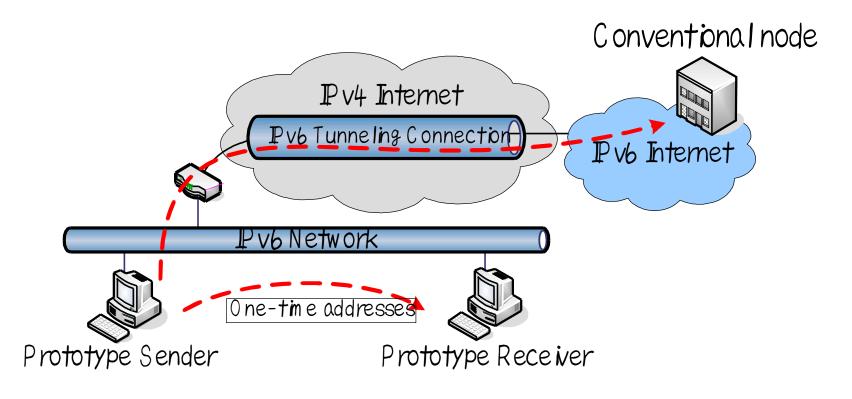
- Limited range of addresses is assigned to a network interface in order to reduce the number of assigned addresses.
- Assignment, generation and removal of address are triggered by the first access to the address within the range.

Treatment of duplicated address

- Duplication of generated address will rarely happen, but it is unavoidable.
 - Receiver can detect a duplicate address, but sender has no way to detect the duplication unless it is informed from the receiver.
- A new ICMP message is used for skipping the duplicate address
 - Receiver send an ICMP message to inform sender about the duplicate address before it is used.
 - Sender skips the address informed by receiver.

Implementation of Prototype Receiver

- Implement on the Linux kernel (2.6)
- One-time address generation
 - Obtains a network prefix from a RA (router advertisement) message.
 - Generates a sequence of I/F IDs from a random initial I/F ID and a encryption key.
 - Publishes a dummy address (the network prefix and the initial I/F ID).
- Attachment/detachment of one-time address
 - Attaches an address from the sequence.
 - Detaches the address that is no longer used.


Implementation in the sender side

- It is difficult for user to specify a receiver's changing one-time address.
 - We provide the mechanism that users can specify target host names in stead of addresses.
 - The address selection mechanism on sender must be transparent to application programs
- We have developed an one-time address resolver, and integrated into name resolver library (glibc-2.4)
 - Returns an one-time address of receiver to user's program on sender (e.g. when getaddrinfo() is used)

Experimental evaluation

- Prototype nodes works well with conventional IPv6 networks.
 - A prototype receiver is accessed with one-time addresses.
 - Conventional nodes are accessed without any difference.

Overheads of proposed one-time address

- RTTs are measured between a sender and a receiver connected on a segment.
- Only negligible overheads(< 1ms) are observed for one-time receiver address.
- The overhead of proposed system is negligible.

Table 1. Difference of RTT of between original kernel and modified kernel

Sequence number	1	2	3	4
Normal address on original kernel (ms)	1.115	0.151	0.149	0.150
One-time address on modified kernel (ms)	1.291	0.190	0.191	0.192
Difference of RTT	0.176	0.039	0.042	0.042

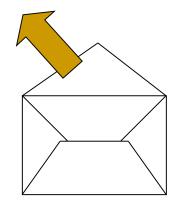
Conclusion

- We have developed one-time receiver address for unlinkability.
 - Receiver uses one address after another, and sender follows the change.
 - By using a shared encryption key, both nodes can generate identical sequence of addresses.
- Negligible overheads exist only at the both ends of communication.
 - Our system requires neither multiple relays nor multiple receiver.

Remaining problems and approaches

- Linkage by the network prefix
 - Network prefix potion of address remains unchanged.
 - ⇒ multiple paths with one hop relays
- Linkage by the link-level header
 - MAC address may disclose a relation between messages.
 - ⇒ one-time MAC address for unlinkability

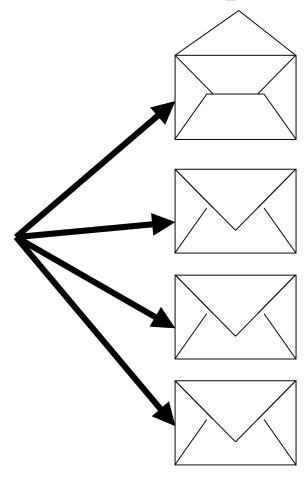
Related work: Onion Routing [D. M. Goldschlag et. al., 1996]

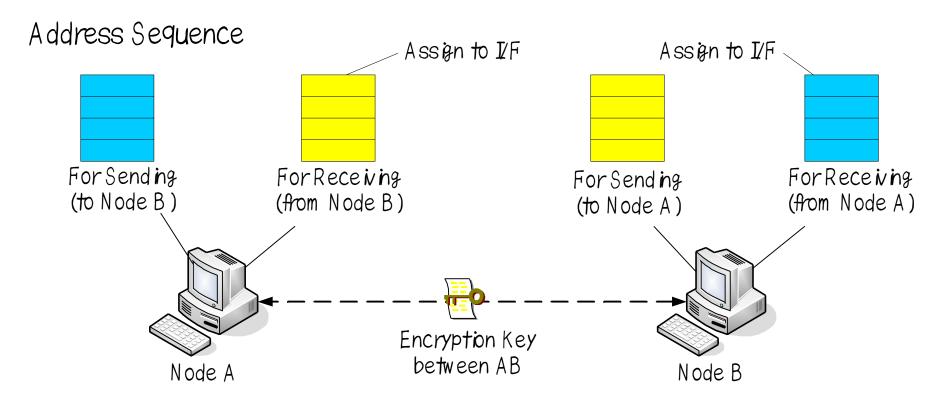

Anonymity of sender and receiver

 A message is enclosed in encrypted envelopes over and over.

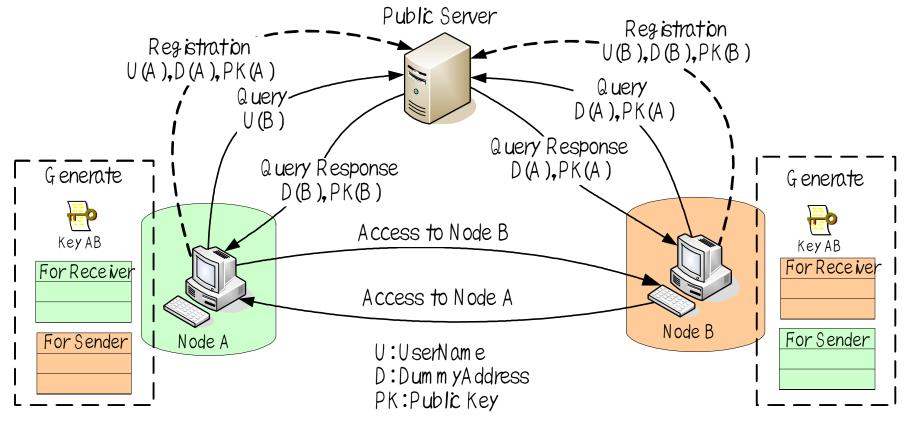
 Each envelope can be opened only by the addressed relay node.

Disadvantage


- Decryption process is required at every relay node.
- Large delay may be occurred by multiple relays.


Related work: Incomparable public keys [B. R. Waters et. al., 2003]

- Anonymity of receiver
 - A message is encrypted and send to multiple nodes (with multicasting.)
 - Only proper receiver can decrypt the message.
- Disadvantage
 - Messages sent to other nodes waste the network resources.


Node has two or more address sequences

- Node becomes sender and receiver so that it has a pair of address sequences for each corresponding node.
- The number of sequences = 2 * (The number of nodes)

Node generates a pair of address sequences

- Node A and node B register each dummy address and public key to public server.
- Each of node gets the public key of the other node, generates the same encryption key.

