A Sandbox with Dynamic Policy
Based on Execution Contexts of
Applications

Tomohiro Shioya, Yoshihiro Oyama, Hideya Iwasaki

The University of Electro-Communications,
Japan

Outline

1. Background and Motivation
2. Proposed System

3. Implementation

4. Experimental Result

5. Related Work and Conclusion

Background

Illegal accesses are problems
B Attacks that exploit vulnerabilities of applications

It's difficult to find all vulnerabilities

¥

Sandbox can minimize the damages caused by attacks

/—I Sandbox I—\

Application

permit accesses

deny accesse

_

referd L

Policy

Permitted
resources

Denied
resources

[0 Monitor the behavior of
applications

[0 Prevent resource
accesses that are against
intention of users

A policy is a set of specifications
of the privileges of programs
for operating each resource

Execution Contexts and Resource Accesses

Execution contexts change with program execution
Resource accesses change with execution contexts

Ex. POP Server
execution contexts resource accesses

start+— : : :
initialization configuration file

’) 4 clean up
en

Problem of Existing Sandboxes

Only a single policy is applied
B Against the principle of the least privilege
(Provide excessive access rights)

execution contexts single policy

start—
.......... initialization

user-information | read configuration file
network access

password-check _
el read password ﬂle

transaction read /write spool file
N exit process

update

clean up
end X _ _
Password file can be accessed in any contexts

Outline

1. Background and Motivation
2. Proposed System

3. Implementation

4. Experimental Result

5. Related Work and Conclusion

Proposed System

A sandbox system that

B Enables users to dynamically switch
between different policies

[0 Adequate policy is applied to each execution context

¥

Conforms well to the principle of the least privilege

Dynamic Policy Switching

execution contexts dynamic policy
start—

initialization read configuration file

user-information | network access

password-check |read password file

transaction read spool file
| update write spool file
clean up exit process
end X '

Password file can be accessed only in the passward-check context

Approximation of Execution Contexts

Execution context
= A chain of user-defined function calls

[0 Each function usually implements
some related parts within the application

A chain of function call 'g'

main f
. g | Read password file] ©f g-f-main
i/\\ ””” 0 @ g - main

access to the

g Read pgssword fiIeJ AU password file
« 1@ main —

f allowed
v g _

~

Basic Design

The sandbox
B Intercepts each system call
B Analyzes the current execution contexts

B Determines whether it is allowed or not
Application process

/—I Proposed sandbox | T systeq call
\ 4

""" Pohcy < ;"éﬁéi'y'z"e"t'h'é'ééﬁ't'é'i(t"';
. |_Policy <: apply policy for |

the context

System call routine

Policy = Permit/Deny of system calls

10

Description of Dynamic Policy

Ex. Qpopper 4.0.4

#include <sys/fentl.h>
#include <sys/socket.h>

#include "popper.h”
% %
main() {

socket(AF_INET, SOCK_STREAM, 0);
fopen("/dev/null", "w+");

}
pop_pass(POP *p) {
>sleep();

>open(concat("/var/spool/", p->name),
O_RDWR|O_CREAT, 0666);

=N

1apeaH

o

o

Q.
~<<

[0 List of allowed system
calls / library functions

Each system call is allowed
to be called from defined
functions

B Default: directly
m ">": directly or indirectly

O

Resources that can be
dynamically decided by using
runtime information

User Spool File

shioya | /var/spool/shioya

iwasaki | /var/spool/iwasaki

Outline

1. Background and Motivation
2. Proposed System
3.Implementation

4. Experimental Result

5. Related Work and Conclusion

Implementation (1/2)

Implemented on Linux kernel 2.6.8

Consists of two Loadable Kernel Modules
B Context analysis module
B Policy application module

Generates policy application module from the
policy description

Rewrites a system call entry table to intercept
system calls

13

Implementation (2/2)

/4

return addr2

return addrl

sso00.d Jasn
-

A

Function f : : ..
} unction frame Policy Policy application
}Function frame file module generator

vstack top

[

Intercept system calls

v

is it a target process?

Y

get return addresses

v

9INpow SISAjeue IXa3uo0)

check the policy

user space

and install:
\ 4

check procedures
of each function

A

against policies

v

System call routines

a|npow uonediidde Adijod

Linux kernel 2.6.8
Loadable Kernel Module

Generate ;| kernel space

14

Outline

1. Background and Motivation
2. Proposed System

3. Implementation

4. Experimental Result

5. Related Work and Conclusion

Experiment

Detection of attacks
Overhead of proposed system

B A micro benchmark
B Client-side response time

Server

Client

OS

Linux kernel 2.6.8

Linux kernel 2.4.27

CPU

Pentium 4 3.0-GHz

Pentium III 930-MHz

Mem

1-GB

256-MB

1000BASE-T Ethernet

16

Detection of Attacks: Qpopper 4.0.4

Intentional vulnerability for verification

B Open /etc/passwd if a negative argument is given
to a LIST command

pop_user() { pop_list() {
open("/etc/passwd”, 0) write(_, _,)
close() }

}

Result of verification
B Without proposed system: involuntarily opened
B With proposed system: system call error

The system was able to apply dynamic policies
based on execution contexts 17

Micro Benchmark

Execution time of operation that consists of opening
a file and immediately closing it

B nis the length of the chain of user-defined functions
B Analyze n+1 stack frames

B The case n=0, an approximation of a single-policy sandbox

without with proposed system

proposed un- sandboxed

system sandboxed |n=0|{n=1|{n=2|n=3|n=4|n=>5
1.75 1.88(3.40| 3.79| 4.04| 4.26| 4.57| 4.91

(usec)

The case n=5 extra overhead compared with
the case n=0 was 44% 8

Cleint-side response time

Measured response time of Qpopper 4.0.4

command without with proposed system
proposed system | un-sandboxed sandboxed
USER 24.0 24.3 25.0
LIST 11.0 11.2 11.3
RETR 21.8 21.9 22.6
(u sec)

Overhead is (compared with without proposed system)
B un-sandboxed: within 2%
B sandboxed: almost 4%

The overhead is not a serious problem
compared with the network latency

19

Outline

1. Background and Motivation
2. Proposed System

3. Implementation

4. Experimental Result

5. Related Work and Conclusion

Related Work

Source codes of target applications must be modified
B SubDomain [Cowan et al. 00]

[0 Can switch policies when a target process calls an
exec system call or a special system call change_hat

B An extension of Systrace [Kurchuk et al. 04]
[0 Can switch policies when a special function

Our system does not require the application code modification

The target is not native codes
B Java Stack Inspection [Wallach et al. 97]
[0 The mechanism to switch policies in Java sandboxes

Our system achieves dynamic policy switches for native code

21

Conclusion

We proposed a sandbox system that can
apply dynamic policies in accordance with
the execution contexts

It uses a chain of user-defined function calls
as an approximation of an execution context

We implemented on Linux and evaluated
effectiveness by experiments

22

