Run-time Enforcement of
Policies

Harshit Shah
Tata Institute of Fundamental Research
and Uni of Tento
R.K Shyamasundar
IBM India Research Lab

(Under Indo-Italian Programme (TIFR-Trento)- ITPAR)

Organization

Motivation

Policy Specification

— Guarded Specifications
— Past temporal Logic

Implementation
Comparison
Summary

Untrusted code

Open a backdoor

Ken Thomson - Reflections on trusting trust
Malicious code in the compiler that opens a backdoor
Leak sensitive data

Keylogger.Stawin: attempts to steal user’s online banking
information

Corrupt the system

CIH (Chernobyl) virus: over-writes critical system
information and corrupts BIOS

Infect other hosts on the network
Mydoom: fast spreading worm that sends junk e-mail

through infected computers * *®

Approach: Monitoring &
Enforcing Policies

1. Monitor activity of untrusted code
observe what the code is trying to do

2. Formulate policies to constrain
activity
state what constitutes “"undesirable” behaviour

3. Enforce the policy on untrusted code

ensure that program actions are consistent with
definition of safety in step 2.

Monitor the activity

e Observable program actions
— System calls e.qg.,
open("abc.txt’’,0 RDONLY)
e Applications access OS services
through system call

- e.g., using a network interface card,
creating a file

IBM Tivoli = Monitor, Alert
and Correct

e keep an eye on all the parts of your
infrastructure and alert the right
people, or even take corrective
actions, when things go wrong.

— OS agents monitor general system
resources,

— while application agents monitor
resources specific to that application.

Policy Specifications : OS
Monitoring

e Policy of Access

e Default Policy

— For those that have not been specified
(like Symantic firewall/security agent)

e Privilege elevation

— Beyond restricting an application to its
expected behavior, there are situations
in which there is a need to increase its
privilege.

Privilege Elevation;
Examples

e Unix -- many system services and applications require
root privilege to operate.

— Often, higher privilege required only for a few operations.

— Instead of running the entire application with special
privilege, elevate the privilege of a single system call.

— the principle of least privilege: every program and every user
should operate using the least amount of privilege necessary
to complete the job

e specifying the requirement that certain actions require
elevated privilege, the policy language needs to assign
the desired privilege to matching policy statements.

— start the program in the process context of a less privileged

user and the kernel raises the privilege just before the
specified system call is executed and lowers directly

afterwards.
— Restrictions on user daemon and the system daemon

Privilege Elevation;
Examples

e Identifying the privileged operations of
setuid or setgid applications allows us to
create policies that elevate privileges of
those operations without the need to run
the whole application at an elevated
privilege level.

e As a result, an adversary who manages to
seize control of a vulnerable application
receives only very limited additional
capabilities instead of full privileges.

Examples ..

e Ping program-- a setuid application
requiring special privileges to
operate correctly.

— To send and receive ICMP packets, ping
creates a raw socket which is a
privileged operation in Unix.

— With privilege elevation, we execute
ping without special privileges and use a
policy that contains a statement
granting ping the privilege to create a
raw socket.

Examples

e Unix allows an application to discard
privileges by changing the uid and gid of a
process.

— The change is permanent and the process cannot
recover those privileges later.

e If an application occasionally needs special
privileges throughout its lifetime dropping
privileges is not an option.

— privilege elevation becomes especially useful.

- E.g., , the ntpd daemon synchronizes the system
clock. Changing system time is a privileged
operation and ntpd retains root privileges for its
whole lifetime.

Our Objective

A Simple language for specifying policies
(including OS monitoring ...)

Generating monitors from such a
specification

Verify properties of the various policies
being enforced

Later use past LTL for specifying policies
for temporal requirements and distribute

- Have the power of shallow automata (where the
order of access does not matter)

— Security monitoring automata, edit automata ..

Formulation of policies

¢ Guarded Command: G -> S

— If proposition G is true, then execute
statements in S

e Guarded Comand Policy Specification
Language (GCPSL)

e Verifiability of policies (consistencey
etc)

GCPSL syntax

state:
var _type, state var, = initial value;;

command:

(call (x,y,z)) /\ (cond,; \ cond,) -> statement,; ...;

(call,(w)) \ (cond;) -> terminate;

default:
skip | terminate;

GCPSL example

Application should not write more than 80,000 bytes

state:
Int count = 0;
command:
(write(fd, buff, num bytes)) /\ (count < 80000) /\
(count + num_bytes 80000) ->
count = count + result;

(write(fd, buff, num bytes) ->
skip;
default:
terminate;

Enforce policy

Intercept system calls
Consult policy
Allow / disallow system call

Check consistency of policies or
others safety properties (using a
UNITY like methodology)

e

e
__

System call architecture

= forward contro] flow

.

_system call table

— e e
—_— ~
= int 0x80 -
U=CT =s0acs

| (system call) P
—_
—— kernel sPacs
——
—
& T 2t o
I —— I[Itﬂl'.‘l'l]p[I ~ e = == e
_ YVecowr Table K _.} & .
— =~ e
e —
pr—— : I system call
_

Monitoring framework

= forward control flow

------ = return edge
Application
User space
int 0x80 e e
(system call) " SOTIpOnE)
1T 1

Interrupt (EEP
Vector Table \ g o

L

_system call table

I

Monitoring a set of
processes

E.g., all sessions of an application can send N
messages (collectively) after which each session
should acquire user permission before sending a

message

Global state variables for the aggregate behaviour
A copy of local variables for each process

Visible actions of the form <P,,call()>

processes

||l|||||IIIIIIIIIIIIIHIHUMIJJ[IJMU

| [P_i, action()]

Monitor w

|
|

Enforcing temporal
constraints

e Write the policy as a Pure Past LTL
formula

e Compile into an automaton

e Use this automaton as monitor

specification

Past LTL -- Operators

p: =p|lop|eVel|leSe| Ve

Here, p € AP is an atomic propostiion, & is the “since"
operator and) is the “yesterday' or the “previous step" op-
erator. Other operators can be expressed in terms of these

as follows:

Op=TSp (O - once in the past)
He = =0 (‘H - always in the past)
Yo = Y- (weak version of))

0SS = Hep V Sy (weak version of S)

Past LTL

e Synthesize into Security Automata
— Monitoring, Edit automata
— Shallow automata

e Also can be expressed as an Lustre
(reactive program)

Example

o H(send->10(read)) “No message can be sent after a
file is read”

state.
¥ %
'read Isend i ;=0
’ » command:
- - (¢==0)/\('read())->¢=0;
0 read 1 (==0)\(read())->¢=1;

(¢=1)/\(!send())->¢=1;
default:

: t inat
Security Automaton ermmate

Sample Implementation

Linux kernel 2.6.17
Policy: process cannot write more than 550bytes
The monitor forks and calls the process

Kernel intercepts “write” calls by untrusted process and signals
the monitoring process

Monitoring process writes the response into a file read by kernel
module

Normal Performance

Performance from external Monitor:
- including calling the monitor, initialization, fork and running the
process,communicating with kernel module, etc.: High
Total time taken when the state information is maintained inside
kernel (no monitoring process in user space): Quite Efficient
Switches between kernel and user space for every system call
incur extra time

Comparisons

|
N ___

Other tools:

systcalltracking

Logs system wide calls based on
rules

rule {
syscall name = open
when = before
action { type = LOG }}

Static patterns

Cannot enforce fine-grained policies
on individual processes

Cannot enforce temporal constraints

http://syscalltrack.sourceforge.net/

Systrace

e Policy specifies action for each system call
e Interactive policy generation

o GUI

e Remote monitoring

e Lengthy policies

http://www.citi.umich.edu/u/provos/systrace/

Systrace policy

Policy: /bin/ls, Emulation:
native

native-munmap: permit

[...]

native-stat: permit

native-fsread: filename match "/usr/*" then permit
native-fsread: filename eqg "/tmp" then permit
native-fsread: filename eqg "/etc" then deny[enotdir]
native-fchdir: permit

native-fstat: permit
native-fcntl: permit
[...]

native-close: permit
native-write: permit

native-exit: permit

Other Frameworks

e Naccio
— Implemantation for windows
— Writing policies is complex

e POET/PSLang
— Monitoring for Java

e Polymer

— Edit automaton implementation for Java
programs

Overall comparison

. PoET
Sysc_alltrac Systrace Naccio / Polymer GCPSL
king PSLang
Ease of
writing X X X v X v
policies
Expressive v, v v v v v
policies?
constrain
collective
behaviour of S A A A A v
a set?
Platforn Linux Linux W|n3a2/Jav Java Java Linux
Target code v v 5 J v v

modified?

Summary

GCPSL allows a rich set of policies to be formulated
Policies are easy to write

Verifiability of policies

The target program does not need to be modified

More experiments for fine-grained specifications
and temporal specifications need to be done

Integration ...

51

I i
\ ““HHHHHHHIIIHIIIIHllIH\H’ I

Sample Implementation

Linux kernel 2.6.17
Policy: process cannot write more than 550bytes
The monitor forks and calls the process

Kernel intercepts “write” calls by untrusted process and signals
the monitoring process

Monitoring process writes the response into a file read by kernel
module

Total time taken for the original process: 2ms

Total time with monitoring (including calling the monitor,
initialization, fork and running the process,communicating with
kernel module, etc.): 190ms

Total time taken when the state information is maintained inside
kernel (no monitoring process in user space): 3.1ms

Switches between kernel and user space for every system call
incur extra time

