Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning^{*}

Luca Compagna

joint work with Alessandro Armando

MRG-Lab – DIST, University of Genova

FLoC 2002 – FCS and VERIFY, Copenhagen, July 25 2002

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning

[∗]This work has been supported by the FET Open Assessment Project AVISS IST-2000-26410.

Introduction

• **Context:** Dramatic speed-up of SAT solvers in the last decade: problems with thousands of variables are now solved routinely in milliseconds.

This has led to breakthroughs in planning and hardware verification.

• **Approach:** In this work we have investigated if similar results can be obtained by applying SAT-based model-checking to security protocols.

Roadmap

- Example.
- The Model and Protocol Insecurity Problems.
- Encoding Protocol Insecurity Problems into SAT.
- Implementation and Experimental Results.
- Conclusions and Perspectives.

An example

Consider the following simple protocol:

1.
$$
A \rightarrow B
$$
: $\{N_A\}_{K_{AB}}$
2. $B \rightarrow A$: $\{f(N_A)\}_{K_{AB}}$

An example

Consider the following simple protocol:

1.
$$
A \rightarrow B
$$
: $\{N_A\}_{K_{AB}}$
2. $B \rightarrow A$: $\{f(N_A)\}_{K_{AB}}$

This protocol is flawed. In fact, by executing

1.1.
$$
A \to I(B)
$$
: $\{N_A\}_{K_{AB}}$
\n2.1 $I(B) \to A$: $\{N_A\}_{K_{AB}}$
\n2.2 $A \to I(B)$: $\{f(N_A)\}_{K_{AB}}$
\n1.2 $I(B) \to A$: $\{f(N_A)\}_{K_{AB}}$

A believes to speak with B in the first session, but A is really speaking with I .

Modeling

- Perfect cryptography: an encrypted message can be neither altered nor read without the appropriate key.
- The Dolev-Yao attacker:
	- controls all the traffic in the network.
	- can compose and send fraudulent messages from the knowledge he can glean from the observed traffic and his own initial knowledge.

Protocol Specification Language

We use an expressive formalism based on first-order multiset rewriting, called IF, (see Jacquemard, Rusinowitch, and Vigneron, "Compiling and Verifying Security Protocols" in LPAR 2000) that

- supports the specification of different protocol models and properties,
- has a clear, well-defined semantics, and
- results from automatic compilation of high-level protocol specifications in the "Alice&Bob"-style notation.

States represented by multisets of terms of the form:

• $m(j, s, r, t)$ means that sender s has (supposedly) sent message t to principal r at protocol step j .

States represented by multisets of terms of the form:

- $m(j, s, r, t)$ means that sender s has (supposedly) sent message t to principal r at protocol step j .
- $w(j, s, r, ak, ik, c)$ represents the state of principal r at step j of session c ; it means that r
	- knows the terms stored in the lists ak (acquired knowledge) and ik (initial knowledge), and
	- is waiting for a message from s (if $j \neq 0$).

States represented by multisets of terms of the form:

- $m(j, s, r, t)$ means that sender s has (supposedly) sent message t to principal r at protocol step j .
- $w(j, s, r, ak, ik, c)$ represents the state of principal r at step j of session c ; it means that r
	- knows the terms stored in the lists ak (acquired knowledge) and ik (initial knowledge), and
	- is waiting for a message from s (if $j \neq 0$).
- \bullet $i(t)$ means that the intruder knows t.

States represented by multisets of terms of the form:

- $m(j, s, r, t)$ means that sender s has (supposedly) sent message t to principal r at protocol step j .
- $w(j, s, r, ak, ik, c)$ represents the state of principal r at step j of session c ; it means that r
	- knows the terms stored in the lists ak (acquired knowledge) and ik (initial knowledge), and
	- is waiting for a message from s (if $j \neq 0$).
- \bullet $i(t)$ means that the intruder knows t.
- $fresh(n)$ means that n has not been used yet.

• Initial State:

 $w(0,alice,alice,[], [alice, bob, kab], 1) w(1,alice, bob,[], [bob,alice, kab], 1) \ldots$ $fresh(nc(na, 1))$ *i*(alice)*i*(bob)

• Initial State:

 $w(0,alice,alice,[], [alice, bob, kab], 1) w(1,alice, bob,[], [bob,alice, kab], 1) \ldots$ $fresh(nc(na, 1))$ *i*(alice)*i*(bob)

• Protocol Rules: $w(0, xA, xA,[], [xA, xB, xK], xC)$ f $resh(nc(na, xC))$ \Rightarrow $m(1, xA, xB, \{nc(na, xC)\}_{xK})$ $w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)$

• Initial State:

 $w(0,alice,alice,[], [alice, bob, kab], 1) w(1,alice, bob,[], [bob,alice, kab], 1) \ldots$ $fresh(nc(na, 1))$ *i*(alice)*i*(bob)

- Protocol Rules: $w(0, xA, xA,[], [xA, xB, xK], xC)$ fresh $(nc(na, xC)) \Rightarrow$ $m(1, xA, xB, \{nc(na, xC)\}_{xK})$ $w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)$
- Intruder Rules:

 $m(xj, xs, xr, xmsg) \Rightarrow i(xs) i(xr) i(xmsg)$ $i({\{xmsg\}_x}\)$ i(xK) \Rightarrow i($xmsg$)i(${\{xmsg\}_x}\$ i(xK)

• Initial State:

 $w(0,alice,alice,[], [alice, bob, kab], 1) w(1,alice, bob,[], [bob,alice, kab], 1) \ldots$ $fresh(nc(na, 1))$ *i*(alice)*i*(bob)

- Protocol Rules: $w(0, xA, xA,[], [xA, xB, xK], xC)$ f $resh(nc(na, xC))$ \Rightarrow $m(1, xA, xB, \{nc(na, xC)\}_{xK})$ $w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)$
- Intruder Rules:

 $m(xj, xs, xr, xmsg) \Rightarrow i(xs) i(xr) i(xmsg)$ $i({\{xmsg\}_x}\)$ i(xK) \Rightarrow i($xmsg$)i(${\{xmsg\}_x}\$ i(xK)

• Bad States: $w(0,alice,alice,[], [alice, bob, kab], s(1))$. $w(1,alice, bob, [], [bob,alice, kab], 1)$

Protocol Insecurity Problems

A Protocol Insecurity Problem is a tuple $\langle S, \mathcal{L}, \mathcal{R}, \mathcal{I}, \mathcal{B} \rangle$ where:

- S is a set of atomic formulae of a sorted first-order language called *facts*;
- \bullet \mathcal{L} is a set of function symbols called *rule labels*;
- R is a set of (deterministic) labelled rewrite rules of the form L $\stackrel{l}{\rightarrow} R$, where $L,R\subseteq\mathcal{S}$, and $l\in\mathcal{L}$;
- I and B are the initial state and a set of bad states.

A solution to a Protocol Insecurity Problem is a sequence S_1 $\stackrel{l_1}{\longrightarrow} S_2 \stackrel{l_2}{\longrightarrow} \cdots \stackrel{l_{n-1}}{\longrightarrow} S_n$, where $l_i \in \mathcal{L}$, $\mathcal{I} \equiv S_1$, and there exists $S_{\mathcal{B}} \in \mathcal{B}$ such that $S_{\mathcal{B}} \subseteq S_n$.

Encoding Protocol Insecurity Problems into SAT

The reduction of Protocol Insecurity Problems to SAT is carried out in two phases:

- 1. the Protocol Insecurity Problem is translated into Planning Problem;
- 2. the Planning Problem is then encoded into SAT, using standard encoding techniques, with iterative deepening on the number of steps.

Planning Problems

A planning problem is a tuple $\Pi = \langle \mathcal{F}, \mathcal{A}, Ops, I, G \rangle$, where:

- F and A are sets of ground atomic formulas called fluents and actions respectively.
- Ops is a set of expressions of the form

 $Pre \overset{Act}{\longrightarrow} Add ; Del,$

where $Act \in \mathcal{A}$, and Pre , Add , and Del are finite sets of fluents such that $Add \cap Del = \emptyset.$

• I and G are boolean combinations of fluents representing the initial state and the final states respectively.

A solution to a planning problem is a sequence of actions whose execution leads from the initial state to a final state and the preconditions of each action hold in the state to which it applies.

Protocol Insecurity Problems as Planning Problems

Map IF rewrite rules into "actions":

Encoding Planning Problems into SAT (1)

Fact: Given,

- a planning problem $\Pi = \langle \mathcal{F}, \mathcal{A}, Ops, I, G \rangle$, and
- a positive integer n ,

then it is possible to build a propositional formula Φ_{Π}^n such that any model of Φ_{Π}^n corresponds to a partial-order plan of Π .

Intuition: add an additional time-index parameter to each action or fluent, to indicate the state at which the action begins or the fluent holds.

Encoding Planning Problems into SAT (2)

The formula Φ_{Π}^n is given by the conjunction of the following axioms:

Universal Axioms: for each action $\alpha \in \mathcal{A}$ s.t. $(Pre \stackrel{\alpha}{\longrightarrow} Add; Del) \in Ops$ and for each $i = 0, \ldots, n - 1$

$$
\alpha_i \supset \bigwedge \{p_i \mid p \in Pre\}
$$

\n
$$
\alpha_i \supset \bigwedge \{p_{i+1} \mid p \in Add\}
$$

\n
$$
\alpha_i \supset \bigwedge \{\neg p_{i+1} \mid p \in Del\}
$$

Cardinality: $O(n|\mathcal{A}||\mathcal{F}|)$, but usually $O(n|\mathcal{A}|r)$, where r is the maximal number of fluents mentioned in an operator (usually a small number).

Encoding Planning Problems into SAT (3)

Explanatory Frame Axioms: for all fluents $p \in F$ and for each $i = 1, \ldots, n - 1$

$$
(p_i \land \neg p_{i+1}) \supset \bigvee \left\{ \alpha_i \mid \alpha \in \mathcal{A}, Pre \xrightarrow{\alpha} Add; Del \in Ops, p \in Del \right\}
$$

$$
(\neg p_i \land p_{i+1}) \supset \bigvee \left\{ \alpha_i \mid \alpha \in \mathcal{A}, Pre \xrightarrow{\alpha} Add; Del \in Ops, p \in Add \right\}
$$

Cardinality: $O(n|\mathcal{F}||\mathcal{A}|)$, but usually $O(n|\mathcal{F}|k)$, where k is a small number.

Encoding Planning Problems into SAT (4)

Conflict Exclusion Axioms: for each $i = 0, \ldots, n - 1$

 $\neg(\alpha_i \wedge \alpha'_i)$ $\binom{l}{i}$

for all $\alpha, \alpha' \in \mathcal{A}$ s.t. $\alpha \neq \alpha'$, $Pre \stackrel{\alpha}{\longrightarrow} Add; Del \in Ops$, $Pre' \stackrel{\alpha'}{\longrightarrow} Add'; Del' \in Ops,$ and $Pre \cap Del' \neq \emptyset$ or $Pre' \cap Del \neq \emptyset.$ Cardinality: $O(n|\mathcal{A}|^2)$

Initial State Axioms: I_0 , i.e. the formula I in which each occurrence of a fluent is replaced by a fluent time-indexed with 0. **Cardinality:** $O(|\mathcal{F}|)$.

Goal State Axioms: G_n , i.e. the formula G in which each occurrence of a fluent is replaced by a fluent time-indexed with n . **Cardinality:** depending from the structure of G , typically small.

Is a direct application of this encoding feasible for our task?

Is a direct application of this encoding feasible for our task?

No!

Is a direct application of this encoding feasible for our task?

No!

A number of optimizing transformations need to be done in order to get encodings of manageable size.

Optimizations

- ∇ Language Specialization. √
- **W** Fluent Splitting. √
- **W** Exploiting Static Fluents. √
- ∇ Invariant-based Simplification. √
- W Reducing the Number of Conflict Exclusion Axioms. √
- Step-Compression (step_compression). √
- Building Encryption Properties into the Encoding.
- Exploiting Mutual Exclusion of w -terms.
- \Box Unit Propagation.

Optimizations: Fluent Splitting

- Since $\langle j, s, r, c \rangle$ is a key for $w(j, s, r, ak, ik, c)$, replace $w(j, s, r, ak, ik, c)$ with the conjunction of (new predicates) $wk(j, s, r, ak, c)$ and $inknw(j, s, r, ik, c)$.
- Similar considerations allow us to simplify $inknw(j, s, r, ik, c)$ to $inknw(r, ik, c).$
- Replace $wk(j, s, r, [ak_1, \ldots, ak_l], c)$ with:

 $wk(j,s,r,ak_1,1,c),\ldots, wk(j,s,r,ak_l,l,c)$ The number of wk terms reduces from $O(|\texttt{text}|^l)$ to $O(|l| * | \texttt{text}|).$

Optimizations: Reducing the Number of Conflict Exclusion Axioms

Problem: The number of Conflict Exclusion Axioms grows quadratically in the number of actions.

Solution: exploit the monotonicity of the intruder knowledge. Since a monotonic fluent never appears in the delete list of some action, then it cannot be a cause of a conflict.

Example: IF rewrite rules of the form:

 $i(\langle xM1, xM2 \rangle) \Rightarrow i(xM1) \cdot i(xM2)$

are replaced by:

 $i(\langle xM1, xM2 \rangle) \Rightarrow i(xM1)$ $i(xM2)$ $i(\langle xM1, xM2 \rangle)$

Optimizations: Step-Compression

Simple form of partial-order reduction: significant savings by compressing these rule triples.

Optimizations: Step-Compression

Simple form of partial-order reduction: significant savings by compressing these rule triples.

Optimizations: Step-Compression

Simple form of partial-order reduction: significant savings by compressing these rule triples.

Introduction of Bounds and Constraints

 ∇ Bounding the Number of Session Runs (session_repetitions). √

 ∇ Constraining Variable Instantiation √ (constrain_rule_variables).

Note: These may introduce incompleteness, which can be overcome by searching (using iterative deepening) the parameter space.

Constraining Variable Instantiation

Let us consider part of the Kao-Chow protocol:

\n- $$
S \rightarrow B : \{A, B, Na, Kab\} Kas, \{A, B, Na, Kab\} Kbs
$$
\n- $B \rightarrow A : \{A, B, Na, Kab\} Kas, \{Na\} Kab, Nb$
\n

B cannot check that the occurrence of A in the first component is equal to that inside the second. As a matter of fact, we might have different terms at those positions.

This constraint imposes that the occurrences of A (as well as of B , Na , and Kab) in the first and in the second part of the message must coincide.

For instance, messages of the form

 $m(2, a, b, c({a, b, nc(na, s(1))}kas, {a, b, nc(nb, s(1))}kbs)))$

would be ruled out by the constraint.

Implementation

• IF2SATE: a translator from the IF to SATE (a STRIPS-like language).

6,200 lines of Prolog code.

• SATE: a compiler from SATE to SAT (DIMACS format). 2,800 lines of Prolog code.

NOTE: state-of-the-art tools carrying out the SAT encoding of planning problems (Medic, BlackBox) are unable to handle STRIPS languages with complex term structure (only individual constants allowed).

Experiments: Analysis

Over the Clark/Jacob library:

- Coverage: unsuited to detect type-flaws, but effective on the others.
- Effectiveness: it finds most of the known attacks.
- Performance: Encoding Time largely dominates Solving Time.

Conclusions & Perspectives

- SATMC performs well on the Clark/Jacob library.
- Optimizations bring a lot! Some remain to be implemented. We expect orders of magnitude reduction in compilation time by:
	- building encryption properties into the encoding,
	- exploiting more sophisticated encoding (e.g. graphplan encoding), and
	- applying unit propation during the encoding phase.
- Approach is declarative and incremental: we can easily modify goal or initial state without recompilation.
- Symbolic representation trivially allows sets of initial states.