
Automatic SAT-Compilation of Protocol Insecurity
Problems via Reduction to Planning∗

Luca Compagna

joint work with Alessandro Armando

MRG-Lab – DIST, University of Genova

FLoC 2002 – FCS and VERIFY, Copenhagen, July 25 2002

∗This work has been supported by the FET Open Assessment Project AVISS IST-2000-26410.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning

Luca Compagna 1

Introduction

• Context: Dramatic speed-up of SAT solvers in the last decade:

problems with thousands of variables are now solved routinely in

milliseconds.

This has led to breakthroughs in planning and hardware

verification.

• Approach: In this work we have investigated if similar results can

be obtained by applying SAT-based model-checking to security

protocols.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 2

Roadmap

• Example.

• The Model and Protocol Insecurity Problems.

• Encoding Protocol Insecurity Problems into SAT.

• Implementation and Experimental Results.

• Conclusions and Perspectives.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 3

An example

Consider the following simple protocol:

1. A→ B : {NA}KAB
2. B → A : {f(NA)}KAB

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 4

An example

Consider the following simple protocol:

1. A→ B : {NA}KAB
2. B → A : {f(NA)}KAB

This protocol is flawed. In fact, by executing

1.1. A→ I(B) : {NA}KAB
2.1 I(B)→ A : {NA}KAB
2.2 A→ I(B) : {f(NA)}KAB
1.2 I(B)→ A : {f(NA)}KAB

A believes to speak with B in the first session, but A is really speaking with I.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 5

Modeling

• Perfect cryptography: an encrypted message can be neither

altered nor read without the appropriate key.

• The Dolev-Yao attacker:

– controls all the traffic in the network.

– can compose and send fraudulent messages from the knowledge

he can glean from the observed traffic and his own initial

knowledge.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 6

Protocol Specification Language

We use an expressive formalism based on first-order multiset

rewriting, called IF, (see Jacquemard, Rusinowitch, and Vigneron,

”Compiling and Verifying Security Protocols” in LPAR 2000) that

• supports the specification of different protocol models and

properties,

• has a clear, well-defined semantics, and

• results from automatic compilation of high-level protocol

specifications in the “Alice&Bob”-style notation.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 7

The Intermediate Format

States represented by multisets of terms of the form:

• m(j, s, r, t) means that sender s has (supposedly) sent message t

to principal r at protocol step j.

• w(j, s, r, ak, ik, c) represents the state of principal r at step j of

session c; it means that r:

– knows the terms stored in the lists ak (acquired knowledge) and

ik (initial knowledge);

– is waiting for a message from s (if j 6= 0).

• i(t) means that the intruder knows t.

• fresh(n) means that n has not been used yet.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 8

The Intermediate Format

States represented by multisets of terms of the form:

• m(j, s, r, t) means that sender s has (supposedly) sent message t

to principal r at protocol step j.

• w(j, s, r, ak, ik, c) represents the state of principal r at step j of

session c; it means that r

– knows the terms stored in the lists ak (acquired knowledge) and

ik (initial knowledge), and

– is waiting for a message from s (if j 6= 0).

• i(t) means that the intruder knows t.

• fresh(n) means that n has not been used yet.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 9

The Intermediate Format

States represented by multisets of terms of the form:

• m(j, s, r, t) means that sender s has (supposedly) sent message t

to principal r at protocol step j.

• w(j, s, r, ak, ik, c) represents the state of principal r at step j of

session c; it means that r

– knows the terms stored in the lists ak (acquired knowledge) and

ik (initial knowledge), and

– is waiting for a message from s (if j 6= 0).

• i(t) means that the intruder knows t.

• fresh(n) means that n has not been used yet.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 10

The Intermediate Format

States represented by multisets of terms of the form:

• m(j, s, r, t) means that sender s has (supposedly) sent message t

to principal r at protocol step j.

• w(j, s, r, ak, ik, c) represents the state of principal r at step j of

session c; it means that r

– knows the terms stored in the lists ak (acquired knowledge) and

ik (initial knowledge), and

– is waiting for a message from s (if j 6= 0).

• i(t) means that the intruder knows t.

• fresh(n) means that n has not been used yet.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 11

The IF: an example

• Initial State:

w(0, alice, alice, [], [alice, bob, kab], 1)�w(1, alice, bob, [], [bob, alice, kab], 1)� . . . �
fresh(nc(na, 1))�i(alice)�i(bob)

• Protocol Rules: w(0, xA, xA, [], [xA, xB, xK], xC)�fresh(nc(na, xC))⇒
m(1, xA, xB, {nc(na, xC)}xK)�
w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)

• Intruder Rules:

m(xj, xs, xr, xmsg)⇒i(xs)�i(xr)�i(xmsg)
i({xmsg}xK)�i(xK)⇒i(xmsg)�i({xmsg}xK)�i(xK)

• Bad States: w(0, alice, alice, [], [alice, bob, kab], s(1))�
w(1, alice, bob, [], [bob, alice, kab], 1)

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 12

The IF: an example

• Initial State:

w(0, alice, alice, [], [alice, bob, kab], 1)�w(1, alice, bob, [], [bob, alice, kab], 1)� . . . �
fresh(nc(na, 1))�i(alice)�i(bob)

• Protocol Rules: w(0, xA, xA, [], [xA, xB, xK], xC)�fresh(nc(na, xC))⇒
m(1, xA, xB, {nc(na, xC)}xK)�
w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)

• Intruder Rules:

m(xj, xs, xr, xmsg)⇒i(xs)�i(xr)�i(xmsg)
i({xmsg}xK)�i(xK)⇒i(xmsg)�i({xmsg}xK)�i(xK)

• Bad States: w(0, alice, alice, [], [alice, bob, kab], s(1))�
w(1, alice, bob, [], [bob, alice, kab], 1)

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 13

The IF: an example

• Initial State:

w(0, alice, alice, [], [alice, bob, kab], 1)�w(1, alice, bob, [], [bob, alice, kab], 1)� . . . �
fresh(nc(na, 1))�i(alice)�i(bob)

• Protocol Rules: w(0, xA, xA, [], [xA, xB, xK], xC)�fresh(nc(na, xC))⇒
m(1, xA, xB, {nc(na, xC)}xK)�
w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)

• Intruder Rules:

m(xj, xs, xr, xmsg)⇒i(xs)�i(xr)�i(xmsg)
i({xmsg}xK)�i(xK)⇒i(xmsg)�i({xmsg}xK)�i(xK)

• Bad States: w(0, alice, alice, [], [alice, bob, kab], s(1))�
w(1, alice, bob, [], [bob, alice, kab], 1)

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 14

The IF: an example

• Initial State:

w(0, alice, alice, [], [alice, bob, kab], 1)�w(1, alice, bob, [], [bob, alice, kab], 1)� . . . �
fresh(nc(na, 1))�i(alice)�i(bob)

• Protocol Rules: w(0, xA, xA, [], [xA, xB, xK], xC)�fresh(nc(na, xC))⇒
m(1, xA, xB, {nc(na, xC)}xK)�
w(2, xB, xA, [nc(na, xC)], [xA, xB, xK], xC)

• Intruder Rules:

m(xj, xs, xr, xmsg)⇒i(xs)�i(xr)�i(xmsg)
i({xmsg}xK)�i(xK)⇒i(xmsg)�i({xmsg}xK)�i(xK)

• Bad States: w(0, alice, alice, [], [alice, bob, kab], s(1))�
w(1, alice, bob, [], [bob, alice, kab], 1)

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 15

Protocol Insecurity Problems

A Protocol Insecurity Problem is a tuple 〈S,L,R, I,B〉 where:

• S is a set of atomic formulae of a sorted first-order language

called facts;

• L is a set of function symbols called rule labels;

• R is a set of (deterministic) labelled rewrite rules of the form

L
l−→ R, where L,R ⊆ S, and l ∈ L;

• I and B are the initial state and a set of bad states.

A solution to a Protocol Insecurity Problem is a sequence

S1
l1−→ S2

l2−→ · · · ln−1−−−→ Sn, where li ∈ L, I ≡ S1, and there exists

SB ∈ B such that SB ⊆ Sn.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 16

Encoding Protocol Insecurity Problems into SAT

The reduction of Protocol Insecurity Problems to SAT is carried out

in two phases:

1. the Protocol Insecurity Problem is translated into Planning

Problem;

2. the Planning Problem is then encoded into SAT, using standard

encoding techniques, with iterative deepening on the number of

steps.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 17

Planning Problems

A planning problem is a tuple Π = 〈F ,A, Ops, I,G〉, where:

• F and A are sets of ground atomic formulas called fluents and actions
respectively.

• Ops is a set of expressions of the form

Pre
Act−→Add;Del,

where Act ∈ A, and Pre, Add, and Del are finite sets of fluents such that
Add ∩Del = ∅.

• I and G are boolean combinations of fluents representing the initial state and
the final states respectively.

A solution to a planning problem is a sequence of actions whose execution leads

from the initial state to a final state and the preconditions of each action hold in

the state to which it applies.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 18

Protocol Insecurity Problems as Planning Problems

Map IF rewrite rules into “actions”:

IF rules STRIPS operators

B
P=⇒ A B

P−→ A;¬B
A,B

Q
=⇒ A,B

Q−→ ;¬A,¬B
A,B

R=⇒ A A,B
R−→ ;¬B

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 19

Encoding Planning Problems into SAT (1)

Fact: Given,

- a planning problem Π = 〈F ,A, Ops, I,G〉, and

- a positive integer n,

then it is possible to build a propositional formula ΦnΠ such that any

model of ΦnΠ corresponds to a partial-order plan of Π.

Intuition: add an additional time-index parameter to each action or

fluent, to indicate the state at which the action begins or the fluent

holds.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 20

Encoding Planning Problems into SAT (2)

The formula ΦnΠ is given by the conjunction of the following axioms:

Universal Axioms: for each action α ∈ A s.t.

(Pre α−→ Add; Del) ∈ Ops and for each i = 0, . . . , n− 1

αi ⊃
∧
{pi | p ∈ Pre}

αi ⊃
∧
{pi+1 | p ∈ Add}

αi ⊃
∧
{¬pi+1 | p ∈ Del}

Cardinality: O(n|A||F|), but usually O(n|A|r), where r is the

maximal number of fluents mentioned in an operator (usually a

small number).

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 21

Encoding Planning Problems into SAT (3)

Explanatory Frame Axioms: for all fluents p ∈ F and for each

i = 1, . . . , n− 1

(pi ∧ ¬pi+1) ⊃∨{
αi | α ∈ A, P re

α−→ Add;Del ∈ Ops, p ∈ Del
}

(¬pi ∧ pi+1) ⊃∨{
αi | α ∈ A, P re

α−→ Add;Del ∈ Ops, p ∈ Add
}

Cardinality: O(n|F||A|), but usually O(n|F|k), where k is a small

number.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 22

Encoding Planning Problems into SAT (4)

Conflict Exclusion Axioms: for each i = 0, . . . , n− 1

¬(αi ∧ α′i)

for all α, α′ ∈ A s.t. α 6= α′, Pre
α−→ Add;Del ∈ Ops,

Pre′
α′−→ Add′;Del′ ∈ Ops, and Pre ∩Del′ 6= ∅ or Pre′ ∩Del 6= ∅.

Cardinality: O(n|A|2)

Initial State Axioms: I0, i.e. the formula I in which each

occurrence of a fluent is replaced by a fluent time-indexed with 0.

Cardinality: O(|F|).

Goal State Axioms: Gn, i.e. the formula G in which each

occurrence of a fluent is replaced by a fluent time-indexed with n.

Cardinality: depending from the structure of G, typically small.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 23

Is a direct application of this encoding feasible
for our task?

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 24

Is a direct application of this encoding feasible
for our task?

No!

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 25

Is a direct application of this encoding feasible
for our task?

No!

A number of optimizing transformations need
to be done in order to get encodings of
manageable size.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 26

Optimizations

�
√

Language Specialization.

�
√

Fluent Splitting.

�
√

Exploiting Static Fluents.

�
√

Invariant-based Simplification.

�
√

Reducing the Number of Conflict Exclusion Axioms.

�
√

Step-Compression (step_compression).

� Building Encryption Properties into the Encoding.

� Exploiting Mutual Exclusion of w-terms.

� Unit Propagation.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 27

Optimizations: Fluent Splitting

• Since 〈j, s, r, c〉 is a key for w(j, s, r, ak, ik, c), replace

w(j, s, r, ak, ik, c) with the conjunction of (new predicates)

wk(j, s, r, ak, c) and inknw(j, s, r, ik, c).

• Similar considerations allow us to simplify inknw(j, s, r, ik, c) to

inknw(r, ik, c).

• Replace wk(j, s, r, [ak1, . . . , akl], c) with:

wk(j, s, r, ak1, 1, c), . . . ,wk(j, s, r, akl, l, c)

The number of wk terms reduces from O(|text|l) to

O(|l| ∗ |text|).

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 28

Optimizations: Reducing the Number of Conflict
Exclusion Axioms

Problem: The number of Conflict Exclusion Axioms grows

quadratically in the number of actions.

Solution: exploit the monotonicity of the intruder knowledge. Since

a monotonic fluent never appears in the delete list of some action,

then it cannot be a cause of a conflict.

Example: IF rewrite rules of the form:

i(〈xM1, xM2〉)⇒i(xM1)�i(xM2)

are replaced by:

i(〈xM1, xM2〉)⇒i(xM1)�i(xM2)�i(〈xM1, xM2〉)

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 29

Optimizations: Step-Compression

Simple form of partial-order reduction: significant savings by

compressing these rule triples.

w(...)
m(...)
=>
w(...)
m(...)

i(...)
=>
w(...)
m(...)

w(...)

i(...)

m(...)
=>
i(...)

Impersonate

step

divert

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 30

Optimizations: Step-Compression

Simple form of partial-order reduction: significant savings by

compressing these rule triples.

m(...)
=>
w(...)
m(...)

i(...)
=>
w(...)

w(...)

i(...)
m(...)

=>
i(...)

w(...)

m(...)

Impersonate

step

divert

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 31

Optimizations: Step-Compression

Simple form of partial-order reduction: significant savings by

compressing these rule triples.

=>
w(...)

divert

w(...)
i(...)

i(...)

Impersonate

step

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 32

Introduction of Bounds and Constraints

�
√

Bounding the Number of Session Runs (session_repetitions).

�
√

Constraining Variable Instantiation

(constrain_rule_variables).

Note: These may introduce incompleteness, which can be overcome

by searching (using iterative deepening) the parameter space.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 33

Constraining Variable Instantiation

Let us consider part of the Kao-Chow protocol:

2. S → B : {A,B,Na,Kab}Kas, {A,B,Na,Kab}Kbs
3. B → A : {A,B,Na,Kab}Kas, {Na}Kab,Nb

B cannot check that the occurrence of A in the first component is equal to that
inside the second. As a matter of fact, we might have different terms at those
positions.

This constraint imposes that the occurrences of A (as well as of B, Na, and
Kab) in the first and in the second part of the message must coincide.

For instance, messages of the form

m(2, a, b, c({a, b, nc(na, s(1))}kas, {a, b, nc(nb, s(1))}kbs)))

would be ruled out by the constraint.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 34

Implementation

• IF2SATE: a translator from the IF to SATE (a STRIPS-like

language).

6,200 lines of Prolog code.

• SATE: a compiler from SATE to SAT (DIMACS format).

2,800 lines of Prolog code.

NOTE: state-of-the-art tools carrying out the SAT encoding of

planning problems (Medic, BlackBox) are unable to handle STRIPS

languages with complex term structure (only individual constants

allowed).

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 35

Experiments: Results
Protocol Atoms Clauses EncTime SolvTime

ISO symmetric key 1-pass unilateral authentication 679 2,073 0.18 0.00

ISO symmetric key 2-pass mutual authentication 1,970 7,382 0.43 0.01

Andrew Secure RPC Protocol 161,615 2,506,889 80.57 2.65

ISO CCF 1-pass unilateral authentication 649 2,033 0.17 0.00

ISO CCF 2-pass mutual authentication 2,211 10,595 0.46 0.00

Needham-Schroeder Conventional Key 126,505 370,449 29.25 0.39

Woo-Lam Π 7,988 56,744 3.31 0.04

Woo-Lam Mutual Authentication 771,934 4,133,390 1,024.00 7.95

Needham-Schroeder Signature protocol 17,867 59,911 3.77 0.05

Neuman Stubblebine repeated part 39,579 312,107 15.17 0.21

Kao Chow Repeated Authentication, 1 50,703 185,317 16.34 0.17

Kao Chow Repeated Authentication, 2 586,033 1,999,959 339.70 2.11

Kao Chow Repeated Authentication, 3 1,100,428 6,367,574 1,288.00 mo

ISO public key 1-pass unilateral authentication 1,161 3,835 0.32 0.00

ISO public key 2-pass mutual authentication 4,165 23,883 1.18 0.01

Needham-Schroeder Public Key 9,318 47,474 1.77 0.05

Needham-Schroeder Public Key with key server 11,339 67,056 4.29 0.04

SPLICE/AS Authentication Protocol 15,622 69,226 5.48 0.05

Encrypted Key Exchange 121,868 1,500,317 75.39 1.78

Davis Swick Private Key Certificates, protocol 1 8,036 25,372 1.37 0.02

Davis Swick Private Key Certificates, protocol 2 12,123 47,149 2.68 0.03

Davis Swick Private Key Certificates, protocol 3 10,606 27,680 1.50 0.02

Davis Swick Private Key Certificates, protocol 4 27,757 96,482 8.18 0.13

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 36

Experiments: Results
Protocol Atoms Clauses EncTime SolvTime

ISO symmetric key 1-pass unilateral authentication 679 2,073 0.18 0.00

ISO symmetric key 2-pass mutual authentication 1,970 7,382 0.43 0.01

Andrew Secure RPC Protocol 161,615 2,506,889 80.57 2.65

ISO CCF 1-pass unilateral authentication 649 2,033 0.17 0.00

ISO CCF 2-pass mutual authentication 2,211 10,595 0.46 0.00

Needham-Schroeder Conventional Key 126,505 370,449 29.25 0.39

Woo-Lam Π 7,988 56,744 3.31 0.04

Woo-Lam Mutual Authentication 771,934 4,133,390 1,024.00 7.95

Needham-Schroeder Signature protocol 17,867 59,911 3.77 0.05

Neuman Stubblebine repeated part 39,579 312,107 15.17 0.21

Kao Chow Repeated Authentication, 1 50,703 185,317 16.34 0.17

Kao Chow Repeated Authentication, 2 586,033 1,999,959 339.70 2.11

Kao Chow Repeated Authentication, 3 1,100,428 6,367,574 1,288.00 mo

ISO public key 1-pass unilateral authentication 1,161 3,835 0.32 0.00

ISO public key 2-pass mutual authentication 4,165 23,883 1.18 0.01

Needham-Schroeder Public Key 9,318 47,474 1.77 0.05

Needham-Schroeder Public Key with key server 11,339 67,056 4.29 0.04

SPLICE/AS Authentication Protocol 15,622 69,226 5.48 0.05

Encrypted Key Exchange 121,868 1,500,317 75.39 1.78

Davis Swick Private Key Certificates, protocol 1 8,036 25,372 1.37 0.02

Davis Swick Private Key Certificates, protocol 2 12,123 47,149 2.68 0.03

Davis Swick Private Key Certificates, protocol 3 10,606 27,680 1.50 0.02

Davis Swick Private Key Certificates, protocol 4 27,757 96,482 8.18 0.13

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 37

Experiments: Results
Protocol Atoms Clauses EncTime SolvTime

ISO symmetric key 1-pass unilateral authentication 679 2,073 0.18 0.00

ISO symmetric key 2-pass mutual authentication 1,970 7,382 0.43 0.01

Andrew Secure RPC Protocol 161,615 2,506,889 80.57 2.65

ISO CCF 1-pass unilateral authentication 649 2,033 0.17 0.00

ISO CCF 2-pass mutual authentication 2,211 10,595 0.46 0.00

Needham-Schroeder Conventional Key 126,505 370,449 29.25 0.39

Woo-Lam Π 7,988 56,744 3.31 0.04

Woo-Lam Mutual Authentication 771,934 4,133,390 1,024.00 7.95

Needham-Schroeder Signature protocol 17,867 59,911 3.77 0.05

Neuman Stubblebine repeated part 39,579 312,107 15.17 0.21

Kao Chow Repeated Authentication, 1 50,703 185,317 16.34 0.17

Kao Chow Repeated Authentication, 2 586,033 1,999,959 339.70 2.11

Kao Chow Repeated Authentication, 3 1,100,428 6,367,574 1,288.00 mo

ISO public key 1-pass unilateral authentication 1,161 3,835 0.32 0.00

ISO public key 2-pass mutual authentication 4,165 23,883 1.18 0.01

Needham-Schroeder Public Key 9,318 47,474 1.77 0.05

Needham-Schroeder Public Key with key server 11,339 67,056 4.29 0.04

SPLICE/AS Authentication Protocol 15,622 69,226 5.48 0.05

Encrypted Key Exchange 121,868 1,500,317 75.39 1.78

Davis Swick Private Key Certificates, protocol 1 8,036 25,372 1.37 0.02

Davis Swick Private Key Certificates, protocol 2 12,123 47,149 2.68 0.03

Davis Swick Private Key Certificates, protocol 3 10,606 27,680 1.50 0.02

Davis Swick Private Key Certificates, protocol 4 27,757 96,482 8.18 0.13

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 38

Experiments: Results
Protocol Atoms Clauses EncTime SolvTime

ISO symmetric key 1-pass unilateral authentication 679 2,073 0.18 0.00

ISO symmetric key 2-pass mutual authentication 1,970 7,382 0.43 0.01

Andrew Secure RPC Protocol 161,615 2,506,889 80.57 2.65

ISO CCF 1-pass unilateral authentication 649 2,033 0.17 0.00

ISO CCF 2-pass mutual authentication 2,211 10,595 0.46 0.00

Needham-Schroeder Conventional Key 126,505 370,449 29.25 0.39

Woo-Lam Π 7,988 56,744 3.31 0.04

Woo-Lam Mutual Authentication 771,934 4,133,390 1,024.00 7.95

Needham-Schroeder Signature protocol 17,867 59,911 3.77 0.05

Neuman Stubblebine repeated part 39,579 312,107 15.17 0.21

Kao Chow Repeated Authentication, 1 50,703 185,317 16.34 0.17

Kao Chow Repeated Authentication, 2 586,033 1,999,959 339.70 2.11

Kao Chow Repeated Authentication, 3 1,100,428 6,367,574 1,288.00 MO

ISO public key 1-pass unilateral authentication 1,161 3,835 0.32 0.00

ISO public key 2-pass mutual authentication 4,165 23,883 1.18 0.01

Needham-Schroeder Public Key 9,318 47,474 1.77 0.05

Needham-Schroeder Public Key with key server 11,339 67,056 4.29 0.04

SPLICE/AS Authentication Protocol 15,622 69,226 5.48 0.05

Encrypted Key Exchange 121,868 1,500,317 75.39 1.78

Davis Swick Private Key Certificates, protocol 1 8,036 25,372 1.37 0.02

Davis Swick Private Key Certificates, protocol 2 12,123 47,149 2.68 0.03

Davis Swick Private Key Certificates, protocol 3 10,606 27,680 1.50 0.02

Davis Swick Private Key Certificates, protocol 4 27,757 96,482 8.18 0.13

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 39

Experiments: Analysis

Over the Clark/Jacob library:

• Coverage: unsuited to detect type-flaws, but effective on the

others.

• Effectiveness: it finds most of the known attacks.

• Performance: Encoding Time largely dominates Solving Time.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

Luca Compagna 40

Conclusions & Perspectives

• SATMC performs well on the Clark/Jacob library.

• Optimizations bring a lot! Some remain to be implemented.

We expect orders of magnitude reduction in compilation time by:

– building encryption properties into the encoding,

– exploiting more sophisticated encoding (e.g. graphplan

encoding), and

– applying unit propation during the encoding phase.

• Approach is declarative and incremental: we can easily modify

goal or initial state without recompilation.

• Symbolic representation trivially allows sets of initial states.

Automatic SAT-Compilation of Protocol Insecurity Problems via Reduction to Planning FCS and VERIFY, July 25, 2002

