
Static Use-Based Object Confinement

Christian Skalka and Scott Smith
The Johns Hopkins University

Object confinement: what is it?

Object confinement is concerned with the encapsulation, or protection, of
object references

• Code boundaries define usage domains

– Classes, packages

– Code ownership

• Sensitive references restricted to certain domains

Object confinement systems provide more expressive specification, and
more reliable enforcement , of reference flow among domains

1

Object confinement: motivations

Beyond good programming practice, object confinement is a security is-
sue; for example, in Java∗:

private Identity[] signers

public Identity[] getSigners(){

return signers;

}

This reference leak circumvents JDK1.2 security mechanism!

∗due to Princeton Secure Internet Programming Group

2

Object confinement: strategies

Our focus: type-based approaches to static enforcement of confinement.

• Previous type-based approaches: communication-based

– Bokowski and Vitek, “Confined Types”

– Clarke, Potter and Noble, “Ownership Types for Flexible Alias Pro-
tection”

These approaches enforce security at the point of communication across
boundaries:

• For any object message send o.m(o’) , the domain associated with
o’ must be accessible to the domain associated with o

3

Use-based object confinement

Our approach is use-based. We focus on how references are used within
domains:

• The active region of code is associated with a current domain

• For any object message send o.m(o’) , the current code domain must
be authorized for the use of o’s method m

This approach has distinct benefits:

• A more fine-grained security specification

– Allows for more or less restrictive views, rather than all-or-nothing

• Supports protocols where untrusted intermediaries are used, e.g. tun-
neling

4

The popsystem

To provide a theoretical foundation for our approach to object confinement,
we develop the popsystem, comprising an OO language core:

• Object annotations for specifying confinement policies

– Object domain specifications

– Object usage specifications

• Run-time checks enforce security policies

The language is low-level and flexible, can model a variety of higher-level
systems: class and package definitions, code ownership systems...

5

The popsystem

The pop system also includes a type discipline for static enforcement of
object confinement security:

• Static enforcement of security means run-time checks can be elimi-
nated, allowing optimizations

• Static enforcement of security allows quicker detection of threats

• Types enhance readability of policies

• Type system for pop developed using advanced techniques, exploits
well-founded previous work

6

The pop language: objects

The pop language includes a familiar language of objects:

[read() = . . . , write(x) = . . .]

In addition to method definitions, objects are assigned domain labels d:

[read() = . . . , write(x) = . . .] · d

The meaning of domains is flexible, and open to interpretation; e.g. domain
labels may specify a code owner, or a package name, etc.

7

The pop language: object interfaces

Objects are also endowed with interfaces ϕ, which specify the per-domain
access rights to the object:

[read() = . . . , write(x) = . . .] · d · ϕ

Interfaces are mappings from domains to sets of object method names,
and include a default domain ∂:

[read() = . . . , write(x) = . . .] · d · {d 7→ {read, write} , ∂ 7→ {read}}

These interfaces are checked at run-time to ensure that any object use is
authorized

8

popexamples

Assume the following definition:

o , [read() = . . . , write(x) = . . .] · d · {d 7→ {read, write} , ∂ 7→ {read}}

Let d′ 6= d be the current domain:

• o.write(v) will fail , o.read() will succeed

Let d be the current domain:

• o.write(v) will succeed, o.read() will succeed

9

The pop language: casting

The pop language also includes a casting mechanism, that allows object
access rights to be removed (run-time enforcement of downcasting):

• op(d, ι) modifies the interface associated with o to map d to ι

For example, letting:

o , [read() = . . . , write(x) = . . .] · d · {d 7→ {read, write} , ∂ 7→ {read}}

The following casts have the described results:

• op(d, {read}) yields a read-only file object

• op(∂, {∅}) yields an object unuseable outside d

10

Types for pop

We develop a static type discipline that predicts dynamic behavior wrt con-
finement specifications:

• Types reflect object interfaces, usage requirements

• Developed using transformational approach, allowing reuse of existing
type safety results, implementations

11

Transformational Approach

Type system for expressions e in popobtained by transformation (|e|):

• (|e|) is a term in a familiar target language pre-equipped with sound
type system, including inference algorithm

• Transformation preserves semantics:

Theorem: If e safely evaluates to v, then (|e|) safely evaluates to
(| v |). If e has runtime errors, then so does (|e|). If e diverges, then (|e|)
diverges.

12

Transformational Approach

Correctness of term transformation (|e|) yields a source language type sys-
tem “for free”– without further proof effort:

• Sound indirect type system for expressions eobtained from target type
system: if (|e|) : τ then e : τ

• Since (|e|) : τ can be inferred, compose transformation and type infer-
ence to infer e : τ

• Method yields insight into semantics and/or desired structure of direct
types for source language, eases proof development

13

Transforming pop: pml

We transform pop into pml, a functional language with records, sets, and
an accurate type system∗

• Row types precisely describe the contents of identifier sets:

{m1, . . . , mn} : {m1+, · · · , mn+,∅}
and membership check operations:

3 m : ∀β.{b+, β} → {b+, β}

• Conditional constraints are used to accurately describe the results of
other set operations, i.e. intersection, union, difference

∗Skalka and Smith, “Set Types and Applications”, TIP02

14

Transforming pop: pml

For example, the type of the intersection operation ∧ is:

∧ : ∀β1β2β3[C].{β1} → {β2} → {β3}
where C = if − ≤ β1 then∅ ≤ β3

∧ if + ≤ β1 thenβ2 ≤ β3

The pml type system comes equipped with:

• Type safety result

• Efficient type inference algorithm∗

∗Pottier, “A Versatile Constraint-Based Type Inference System”

15

The pop-to-pml transformation (highlights)

The transformation of interfaces ϕ is denoted ϕ̂, and uses records with sets
as field values in the image:

̂{d1 7→ ι1, · · · , dn 7→ ιn, ∂ 7→ ι} = {d1 = ι1, · · · , dn = ιn, ∂ = ι}

A simplified definition of object transformation is as follows:

[[[m1(x) = e1, . . . , mn(x) = en] · d · ϕ]]d′
=

{obj = {m1 = λx.[[e1]]d, . . . , mn = λx.[[en]]d}, ifc = ϕ̂}

Method selects are encoded so that access rights are verified in the trans-
formation:

[[e1.m(e2)]]d = let c1 = [[e1]]d in
c1.ifc.d 3 m;
(c1.obj.m)([[e2]]d)

16

Types for pop

Type systems for pop easily developed on the basis of the transformation
into pml:

• Sound indirect type system immediately obtained as composition of
pop-to-pml transformation and pml type system

• A direct system developed on foundation of pml type system

– Direct type safety for popeasily obtained, by proving a simple cor-
respondance between popand pml type judgements

NB: no complicated subject reduction proof necessary to prove type safety!

17

Direct pop types

We define direct type terms specifically adapted for pop, with object types
of the form [τ1] · {τ2}:

• τ1 the types of methods

• τ2 the type of the interface

• Direct pop types have an interpretation as (are syntactic sugar for) pml
types

o , [read() = . . . , write(x) = . . .] · d · {d 7→ {read, write} , ∂ 7→ {read}}
o : [read: unit→ τ, write : τ → unit] · {d : {read, write}, ∂ : {read}}

o.write(v) : unit if d is current (static) domain

o.write(v) not well-typed otherwise

18

Using pop

The pop system is sufficiently flexible to model a number of confinement
mechanisms with strengthened security.

Notably, popcan encode class definitions with strengthened private mod-
ifiers; recall:

private Identity[] signers

public Identity[] getSigners(){

return signers;

}

19

Using pop

The essential problem is expressed via the following package:

class c1 {
public:

m(x)= x;
}

class c2 {
public:

m()= a
private:

a = new c1
}

We can model objects in class c1 as:

o1 , [m(x) = x] · c1 · {c2 7→ {m} , ∂ 7→ {m}}

The class c1 itself can be modeled as an object factory :

fctryc1
, [new() = o1] · d · {∂ 7→ {new}}

20

Using pop

Note that proper casting makes these objects useless outside c2:

(fctryc1
.new() p(∂,∅)) → ([m(x) = x] · c1 · {c2 7→ {m} , ∂ 7→ ∅})

Objects in class c2 can thus be encoded as follows:

o2 , let a = ref (fctryc1
.new() p(∂,∅)) in

[m() = !a] · c2 · {∂ 7→ {m}}

• Casts ensure that objects stored in private instance variables are
unuseable outside scope of the object

• Any leaked reference is a useless reference

21

Conclusion

Major points:

• The pop language, containing features for modeling object confine-
ment mechanisms

• A use-based approach allowing a more fine-grained specification of
confinement properties

• A type system for pop, enhancing security and performance of the lan-
guage

– Developed via transformational approach

22

Conclusion: future work

Future work:

• More realistic OO language model: inheritance

– How are interfaces inherited?

• Dealing with garbage collection of useless objects

• Empirical comparison of use- and communication-based approaches

– Implementation issues? Suitability for patterns of use?

http://www.cs.jhu.edu/~ces/work.html

23

