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product sum

P ,Q F p P ⊗Q 1 P ⊕Q 0 N
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product sum

interface

P ,Q F p P ⊗Q 1 P ⊕Q 0 N

N ,M F n N MM ⊥ N &M ⊤ P



<neutral expression>



E,F F e E × F 1 E + F 0 lE
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n-exp polarity



~〈E × F ,+〉� = ~〈E,+〉�⊗ ~〈F ,+〉�



~〈E × F ,−〉� = ~〈E,−〉�M ~〈F ,−〉�



~〈lE,+〉� = ~〈E,−〉�



~〈lE,+〉� = ~〈E,−〉�

~〈lE,−〉� = ~〈E,+〉�



</polarized proposition>
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~〈(E × (F +G)), o〉�

= ~〈(E × l l (F +G)), o〉�

= ~〈(l l E × (F + l lG)), o〉�



~〈(E × (F +G)), o〉�

= ~〈(E × l l (F +G)), o〉�

= ~〈(l l E × (F + l lG)), o〉�
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~〈l l E, o〉� = ~〈E, o〉�
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n-exps have normal forms
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E × (F +G) ≈ (E × F ) + (E ×G)

“as good as”
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∑
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∑
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Uij



</pattern>



<synthetic rule>



<synthetic rule>
<positive>





E ≈ (U1 + (U2 × U3) + (U4 × U5 × U6))



E ≈ (U1 + (U2 × U3) + (U4 × U5 × U6))

⊢Γ, 〈U1,+〉 ⊢∆, 〈U2,+〉
⊢Γ,∆, 〈U2 × U3,+〉

×

⊢ Γ,∆, 〈E,+〉
+



E ≈ (U1 + (U2 × U3) + (U4 × U5 × U6))

⊢ Γ, 〈U4,+〉 ⊢∆, 〈U5,+〉 ⊢Ω, 〈U6,+〉
⊢Γ,∆,Ω, 〈U4 × U5 × U6,+〉

×

⊢Γ,∆,Ω, 〈E,+〉
+



E ≈
∑

i∈I

∏

j∈1..ni
Uij

u ∈ I

⊢Γi , 〈Uu1,+〉 · · · ⊢Γnu ,
〈

Uunu ,+
〉

⊢Γ1, . . . , Γnu , 〈E,+〉
P
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(Γ1, . . . , Γn)
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(
∏

i∈1..nUi) =

⊢Γ1, 〈U1,+〉 · · · ⊢Γn, 〈Un,+〉



E ≈
∑

i∈Iπi
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∏
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Qu ∈ I . Γ© πu
⊢Γ, 〈E, o〉

R(o,©,Q)

P = R(+,
⊗

,∃)



R(−,M,∀)?



(Γ1, . . . , Γn)M
∏

i∈1..nUi =

⊢Γ1, . . . , Γn, 〈U1,−〉 , . . . , 〈Un,−〉
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∀u ∈ I . ΓM πu
⊢Γ, 〈E,−〉

N = R(−,M,∀)

∃u ∈ I . Γ
⊗

πu

⊢Γ, 〈E,+〉
P = R(+,

⊗

,∃)



N and P are exactly dual
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</synthetic rule>

<interface rule>



⊢ 〈e,+〉 , 〈e,−〉
I



⊢Γ, 〈E,∓〉
⊢Γ, 〈lE,±〉

U



</interface rule>
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⊢Γ, 〈E,+〉 ⊢∆, 〈E,−〉
⊢Γ,∆

C
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⊢ 〈E,+〉 , 〈E,−〉
I*



⊢ 〈E,+〉 , 〈E,−〉
I*

derivable
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phase alternation unnecessary



strategy = arrangement of P and N



Ordinary Focusing
(Andreoli’92)
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“It is embarrassing for proof theory that the natural
question of ‘when are two proofs to be considered

identical?’ lacks good answers [...]

“I believe that deductive nets will be
the right place where to work.”

— Alessio Guglielmi
(web-page)



“The focussing version [...] is a good setting for studying
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“The focussing version [...] is a good setting for studying
sequential models [...]

The concurrent approach [...] is close to Geometry of
Interaction and Proof nets.”

— Samson Abramsky
(concurrent game semantics)



“Down with bureaucracy of

syntax!”

— Philip Wadler

(patterns)



⊢a⊥,a
I

⊢b⊥,b
I

⊢1
P

⊢b,1,b⊥ ⊗ ⊥
P

⊢a,b,1,b⊥ ⊗ ⊥,a⊥ ⊗ ⊥
P



D
⊢a⊥, Γ

E
⊢b⊥,∆

F
⊢Ω

⊢∆,Ω,b⊥ ⊗ ⊥
P

⊢Γ,∆,Ω,b⊥ ⊗ ⊥,a⊥ ⊗ ⊥
P

−→

E
⊢b⊥,∆

D
⊢a⊥, Γ

F
⊢Ω

⊢Γ,Ω,a⊥ ⊗ ⊥
P

⊢ Γ,∆,Ω,b⊥ ⊗ ⊥,a⊥ ⊗ ⊥
P











⊢a⊥,a
I

⊢b⊥,b
I

⊢1
P

⊢a,b,1,b⊥ ⊗ ⊥,a⊥ ⊗ ⊥
P = P, P
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in bijection with proof-nets
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