
Approximating Term Rewrite Systems:
a Horn Clause Specification and its Implementation

John Gallagher Mads Rosendahl
University of Roskilde, Denmark

Supported by Danish Natural Science Research Council project SAFT

LPAR'2008
Doha, Qatar

LPAR'08, Doha, Qatar 23-27 November 2008 2

Approximating term-based systems

M

M

Mα

concrete set of terms M

e.g. model of a logic program

e.g. reachable states of a Dolev-Yao model

e.g. reachable terms of a term rewrite system

abstract set of terms Mα

M ⊆ Mα

Mα is "easier" to reason about

approximate

LPAR'08, Doha, Qatar 23-27 November 2008 3

Proving properties of M in Mα

• Certain properties of M can be proved
in an over-approximation Mα.
– invariants. ∀x ∈ Mα. p(x) →∀x ∈ M. p(x)

• A particular kind of invariant
– safety. badterm ∉ Mα → badterm ∉ M

LPAR'08, Doha, Qatar 23-27 November 2008 4

Motivating example using Horn clauses
Horn clauses defining
operations on a token ring (with any
number of processes)
(example from Roychoudury et al,
and Podelski & Charatonik).

init([0,1]).
init([0 | X]) ← init(X).
trans(X,Y) ← trans1(X,Y).
trans([1 |X],[0|Y]) ← trans2(X,Y).
trans1([0,1|T],[1,0 |T]).
trans1([H|T],[H|T1]) ← trans1(T,T1).
trans2([0],[1]).
trans2([H|T],[H|T1]) ← trans2(T,T1).
reachable(X) ← init(X).
reachable(X) ← reachable(Y), trans(Y,X).

What are the possible solutions for
reachable(X)? Can X be a list containing
more than one '1'?

init([0,1]).
init([0,0,1) .
init([0,0,0,...,1]).
....

Intended reachable
states
reachable([0,0,...,1,...0,0])
(lists with exactly one 1)

Implies mutual exclusion.

[0,1,0,0]

[1,0,0,0]

[0,0,0,1]

trans1

trans2

LPAR'08, Doha, Qatar 23-27 November 2008 5

Abstract Model

% property of interest
0 -> zero.
1 -> one.
[] -> zerolist.
[zero|zerolist] -> zerolist.
[one|zerolist] -> goodlist.
[zero|goodlist] -> goodlist.

% abstract model
{reachable(q1),
trans(q1,q1),trans(q3,q3),
trans1(q1,q1),trans1(q3,q3),
trans2(q1,q3),trans2(q2,q1),
 trans2(q3,q3)}

goodlist

zerolist

other

one

zero

Define a disjoint partition of the set of all terms.

The abstract model shows that only "good"
states are reachable, i.e. those containing
exactly one "1".

LPAR'08, Doha, Qatar 23-27 November 2008 6

Regular Tree Approximations
 Regular tree languages are those definable by finite

tree automata (FTAs).
✔ FTAs are a familiar specification language

✔ tree grammars
✔ abstract syntax
✔ regular types

✔ Decision procedures for emptiness, membership
✔ Regular tree languages closed under boolean

operations

⇒Goal - to construct an FTA over-approximating a
specified set of terms

⇒ Invariants and safety properties can be decided by
FTA operations

LPAR'08, Doha, Qatar 23-27 November 2008 7

Nondeterministic finite tree automata

Example FTA

States
{list, any}
Final States
{list}

Transitions
[] → list
[any | list] → list
[] → any
[any | any] → any
c → any

An FTA A defines a set of terms L(A) - the terms that are
accepted by some run of A.

This FTA is nondeterministic.

E.g. [c] is accepted by states
list and any.

LPAR'08, Doha, Qatar 23-27 November 2008 8

Deterministic FTAs
• An FTA is bottom-up deterministic (DFTA) if

there are no two rules in Δ having the same
left-hand-side.
– f(q1,...,qn) → q and f(q1,...,qn) → q', q ≠ q'

cannot occur
• For every FTA, there is an equivalent DFTA
• A complete DFTA is one in which there is a

transition for every possible lhs.

LPAR'08, Doha, Qatar 23-27 November 2008 9

Determinization of FTAs
• Any FTA can be determinized.
• There is an equivalent FTA that is bottom-up

deterministic
• In a deterministic FTA, each term is in at

most one type (state). States are disjoint.

list

any nonlist

list+

LPAR'08, Doha, Qatar 23-27 November 2008 10

Disjoint Accepting States in DFTAs
• In a complete DFTA each term t has

exactly one run.
• Hence each term is accepted by one

state of a DFTA.

• Thus a complete DFTA defines a
disjoint partition.

• The idea is to abstract each term by
the (unique) state that accepts it in a
DFTA

LPAR'08, Doha, Qatar 23-27 November 2008 11

A procedure for constructing an abstract
model of a Horn clause program

• Define an FTA capturing properties of
interest

• Determinise the FTA, obtaining a pre-
interpretation

• Compute the minimal model wrt to the pre-
interpretation

• See [Gallagher & Henriksen 2004] for details

LPAR'08, Doha, Qatar 23-27 November 2008 12

Is it practical?
• Analysis of a program based on an

FTA presents two significant practical
challenges

– Determinisation can cause a blow-up in
the number of states and transitions

– Representation and manipulation of
relations as tuples is expensive

• it is like representing Boolean functions using
truth tables.

LPAR'08, Doha, Qatar 23-27 November 2008 13

Approaches to Scaling up
• Determinization.

– Product form of transitions yields much
more compact representation of DFTAs

– Representation of relations. Use a BDD-
based representation and exploit
techniques from model-checking

– See [Gallagher, Henriksen & Banda, 2005]

LPAR'08, Doha, Qatar 23-27 November 2008 14

Product representation of transitions
• f(Q1,...,Qn) → q represents the set of

transitions
{f(q1,...,qn) → q | qj ∈ Qj, 1≤j≤n}

E.g. determinized list/nonlist example

[] → list
[{list,nonlist}|{list}] → list
[{list,nonlist}|{nonlist}] → nonlist
f({list,nonlist},..., {list,nonlist}) → nonlist

LPAR'08, Doha, Qatar 23-27 November 2008 15

Reduction in size with product
representation

Q Δ Qd (Δd) ΔΠ

3 1933 4 (1130118) 1951
4 1934 5 (10054302) 1951
3 655 4 (20067) 433
4 656 5 (86803) 433
105 803 46 (6567) 141
16 65 16 (268436271) 89

Q = no. of FTA states
Δ = no. of FTA rules
Qd = no. of DFTA states
Δd = no. of DFTA rules
ΔΠ = no. of DFTA product rules

FTA DFTA

LPAR'08, Doha, Qatar 23-27 November 2008 16

Application to term rewriting
• Problem - Given a set of term rewriting rules

and an initial regular set, compute a regular
approximation of the reachable terms.

• Many dynamic systems and processes
concisely modelled by TRSs
– cryptographic protocols
– abstract machines
– constraint solving procedures
– equational theories
...

LPAR'08, Doha, Qatar 23-27 November 2008 17

Term rewriting
Signature Σ of ranked function symbols (assumed finite)
Set of variables V
Finite set of rewrite rules l ⇒ r, where
• l and r are terms constructed from Σ and V
• vars(r) ⊆ vars(l)

lθ rθ

t t'
rewrite step

LPAR'08, Doha, Qatar 23-27 November 2008 18

Reachable terms
• Write t t' for a rewrite step
• Write * for the reflexive transitive

closure of

• Let I be a set of initial terms
• Then a term t is reachable if t0 * t for

some t0 ∈ I.

LPAR'08, Doha, Qatar 23-27 November 2008 19

Applications
• Check safety properties
• Optimised compilation (decide statically how a given

rule can be applied)
– limit contexts in which the lhs can appear
– describe which substitutions are applied to the variables

• Restricting the reachable terms to constructors
approximates normal forms
– debugging

• Note. Rewrite strategy is abstracted away

LPAR'08, Doha, Qatar 23-27 November 2008 20

Completion method
• Given a TRS and an initial set specified by

an FTA Init
• Compute an FTA Reach containing all the

reachable terms (in general a superset)
• Jones & Andersen (1987, 2007) and

Feuillade, Genet & Tong (2004) defined a
completion method for constructing Reach.

Init Reach
*
α

LPAR'08, Doha, Qatar 23-27 November 2008 21

Completion
• Informally - if some state q is reachable

from the lhs of a rule FTA, then q must
also be reachable from the rhs.

lσ * q

rσ
*

Let A be an FTA
Let σ be a substitution whose
domain is the states of A
Let q be a state in A

Add transitions to A to ensure
that rσ * q.

LPAR'08, Doha, Qatar 23-27 November 2008 22

New states during completion
• In order to ensure rσ * q, new states need

to be added to A.

• Example. plus(s(X),Y) ⇒ s(plus(X,Y))
– suppose A contains transitions s(q0) → q1,

plus(q1,q2) → q3. Thus plus(s(q0),q2) * q3.

– How to construct a run s(plus(q0,q2) * q3?
– Add a new state, say q4.
– Add transitions plus(q0,q2) → q4, s(q4)→ q3.

LPAR'08, Doha, Qatar 23-27 November 2008 23

Completion
• Completion algorithm (applies to left-linear TRSs)

Initialise A0 = Init; i = 0;

repeat
complete each rule w.r.t. Ai
add new transitions to
Ai+1 = Ai ∪ new transitions
i = i+1

until Ai-1 = Ai

Reach = Ai

Init = A0

A1

Reach = Ai

complete

complete

complete

LPAR'08, Doha, Qatar 23-27 November 2008 24

Termination of completion procedure

• Termination is not guaranteed
• An infinite number of new states can be

introduced ⇒ abstraction is required

• Previous work differs in how to avoid
infinite number of states
– Jones & Andersen - fixed finite set of

states corresponding to the rhs variables
– Feuillade et al. - heuristics mapping new

states to previous states

LPAR'08, Doha, Qatar 23-27 November 2008 25

The completion step
plus(s(X),Y) ⇒ s(plus(X,Y))

plus(A, C)→q0(A,C)) :-
 s(A)→B,
 plus(B,C)→D.
s(A, q0(A,C))→D :-
 s(A)→B,
 plus(B,C)→D.

The bodies of the clauses construct
a derivation from the lhs of the rule.

The heads of the clauses are the
newly introduced transitions.

The term q0(A,C) is the new state
introduced.

LPAR'08, Doha, Qatar 23-27 November 2008 26

Complete Example
% Example from Feuillade et al. p. 366

plus(0,X) --> X.
plus(s(X),Y) --> s(plus(X,Y)).
even(0) --> true.
even(s(0)) --> false.
even(s(X)) --> odd(X).
odd(0) --> false.
odd(s(0)) --> true.
odd(s(X)) --> even(X).

% initial FTA
even(qpo) -> qf.
even(qpe) -> qf.
s(qeven) -> qodd.
s(qodd) -> qeven.
plus(qodd, qodd) -> qpo.
plus(qeven, qeven) -> qpe.
0 -> qeven.

rule_odd(B,D) :-
 rule_0(A),
 rule_odd(B,C),
 rule_plus(A,C,D).
rule_false(C) :-
 rule_0(A),
 rule_false(B),
 rule_plus(A,B,C).
rule_true(C) :-
 rule_0(A),
 rule_true(B),
 rule_plus(A,B,C).
rule_even(B,D) :-
 rule_0(A),
 rule_even(B,C),
 rule_plus(A,C,D).
rule_s(B,D) :-
 rule_0(A),
 rule_s(B,C),
 rule_plus(A,C,D).
rule_0(C) :-
 rule_0(A),
 rule_0(B),
 rule_plus(A,B,C).
rule_plus(B,C,E) :-
 rule_0(A),
 rule_plus(B,C,D),
 rule_plus(A,D,E).
rule_plus(A,C,q0(A,C)) :-
 rule_s(A,B),
 rule_plus(B,C,D).

rule_s(q0(A,C),D) :-
 rule_s(A,B),
 rule_plus(B,C,D).
rule_true(B) :-
 rule_0(A),
 rule_even(A,B).
rule_false(C) :-
 rule_0(A),
 rule_s(A,B),
 rule_even(B,C).
rule_odd(A,C) :-
 rule_s(A,B),
 rule_even(B,C).
rule_false(B) :-
 rule_0(A),
 rule_odd(A,B).
rule_true(C) :-
 rule_0(A),
 rule_s(A,B),
 rule_odd(B,C).
rule_even(A,C) :-
 rule_s(A,B),
 rule_odd(B,C).
rule_even(qpo,qf).
rule_even(qpe,qf).
rule_s(qeven,qodd).
rule_s(qodd,qeven).
rule_plus(qodd,qodd,qpo).
rule_plus(qeven,qeven,qpe).
rule_0(qeven).

LPAR'08, Doha, Qatar 23-27 November 2008 27

Abstracting the model
• Note. The model of the program is a

set of FTA transitions
• If the least model of the program is

finite then the FTA in the model
approximates the set of reachable
terms.

• If infinite, then abstraction techniques
for Horn clauses can be applied

LPAR'08, Doha, Qatar 23-27 November 2008 28

Fixed vs. dynamic abstraction
• Relation to abstract interpretation
• Fixed finite height domain

– (Jones & Andersen's method)
• Infinite height domain with widening

– (Feuillade et al.'s method)

• Corresponding methods are well-
studied in Horn clause model
approximation

LPAR'08, Doha, Qatar 23-27 November 2008 29

Initial Experiments
• Literature examples
• Fixed abstractions

– Jones & Andersen's examples in flow analysis of higher-
order functions

• Dynamic abstractions
– compute an FTA approximating the Horn clause model

(both widening-based and other approaches)
– Use this FTA to define a finite partition
– evaluate a more precise model using BDD-based evaluation

(bddbddb tool).

– some larger cryptographic protocols, a JVM
interpreter (Boichut et al. 2007) have been
handled (much faster).

LPAR'08, Doha, Qatar 23-27 November 2008 30

Current Work
• Continued experimental evaluation

• Integrate arithmetic constraints
– domain of "constrained" tree automata

• Abstraction techniques for TRSs applied to
logic programs (effective widenings)

• A more comprehensive Horn clause model
for TRSs (allowing for non-linear rules and
constraints)
– modelling the reachable set directly

