Temporal Reasoning for Machine Code

Nadeem Abdul Hamid

Berry College Mount Berry, Georgia, U.S.A. nadeem@acm.org

November 27, 2008

15th Int'l Conference on Logic for Programming, Artificial Intelligence and Reasoning

Context: Proof-Carrying Code

Proof-Carrying Code (PCC)

- Executable code packaged with a formalized proof of safety
- Selling points
 - Code consumer is provided static proof object (origin of code/proof is irrelevant)
 - Proof applies directly to binary machine code

Proof Properties

- Current PCC research focuses only on safety properties
 - Safety property: proposition that a certain state always or never holds
- This work
 - Consider how to certify more general correctness properties (liveness, deadlock-freeness, fairness in temporal logic terminology)

Logics

- Cog proof assistant
 - Higher-order predicate logic with inductive definitions
 - Used to encode alll definitions and proofs
- Temporal logic
 - Formalism for properties involving a notion of time

Approach

- Encode machine "syntax" and semantics in Coq (standard)
- Encode temporal logic operators in Coq (derive "inference rules")
- Mechanism for building an "abstract automaton" based on a specific program
- Develop rules for reasoning about global properties (invariants) and eventuality properties (termination)

Sample: Counter Program

```
0  f0: movi r1 1
1     movi r2 10
2  f1: bz r2 f2
3     dec r2
4     goto f1
5  f2: nop
6     movi r1 0
```

Program Trace

(program counter, registers)

```
(0, {0,0,...})

\[
\infty (1, \{1,0,...\})
\[
\infty (2, \{1,10,...\})
\[
\infty (3, \{1,10,...\})
\[
\infty (4, \{1,9,...\})
\[
\infty (2, \{1,9,...\})
\[
\infty (4, \{1,8,...\})
\[
\infty (2, \{1,8,...\})
\[
\infty (2, \{1,8,...\})
\[
\infty (2, \{1,8,...\})
\[
\infty (2, \{1,8,...\})
```

Automaton Abstraction

Related Work

- Proof-carrying code [Necula 1997; Appel et al. 2001; Hamid et al. 2003; Yu et al. 2004]
- Temporal logic and PCC [Bernard/Lee 2002; Henzinger 2002]
- Temporal logic in Coq [Coupet-Grimal 2003; Tsai/Wang 2008]
- Termination . . .
- Temporal proof generation . . .

Future Work

- Add nondeterminism in machine model (hardware interrupts)
- Address scalability/level of automation
 - Proof-generating model checker, or something similar
 - Derive annotations for program points from high-level source code

Thank you!

nadeem@acm.org

Prototype development in Coq:

http://cs.berry.edu/~nhamid/pubs/minipic.coq.tgz

Temporal Operators

$$(\mathcal{N} \ G) \ s_0 \stackrel{\triangle}{=} \quad \forall s_1. \ s_0 \rightsquigarrow s_1 \Rightarrow G \ s_0 \ s_1$$

$$(G \ \text{holds on every state that steps from } s_0.)$$

$$(\mathcal{F} \ G) \ s_0 \stackrel{\triangle}{=} \quad \forall \overrightarrow{s_0}. \ \exists s_i \in \overrightarrow{s_0}. \ G \ s_0 \ s_i$$

$$(A \ \text{long every path from } s_0, \text{ there is eventually a state } s_i \text{ such that } G \ s_0 \ s_i.)$$

$$(\mathcal{A} \ G) \ s_0 \stackrel{\triangle}{=} \quad \forall \overrightarrow{s_0}. \ \forall s_i \in \overrightarrow{s_0}. \ G \ s_0 \ s_i$$

$$(\text{Every state } s_i \text{ along every path from } s_0 \text{ satisfies } G \ s_0 \ s_i.)$$

$$(G \ \mathcal{U} \ H) \ s_0 \stackrel{\triangle}{=} \quad \forall \overrightarrow{s_0}. \ \exists s_i \in \overrightarrow{s_0}. \ H \ s_0 \ s_i \wedge \forall j < i. \ \forall s_j \in \overrightarrow{s_0}. \ G \ s_0 \ s_j$$

$$(\text{Along every path from } s_0, \text{ there is eventually a state } s_i \text{ such that } H \ s_0 \ s_i, \text{ and for every state } s_j \text{ preceding } s_i$$

$$\text{in the path, } G \ s_0 \ s_i \text{ holds.})$$

Temporal Operator Rules

$$\frac{\textit{G } s_0 \ \textit{s}_0 \quad (\text{step} \circ \textit{G}) \ \textit{s}_0 \ \Rightarrow \ \textit{G } \textit{s}_0}{(\textit{A } \textit{G}) \ \textit{s}_0} \quad (\text{ALWAYS-LATER})$$

$$\frac{G \ s_0 \ s_0}{(\mathcal{F} \ G) \ s_0} \mathsf{EVNTLY-NOW} \qquad \frac{\forall s_1. \ s_0 \leadsto s_1 \ \Rightarrow \ (\mathcal{F} \ G') \ s_1}{(G' \circ \mathsf{step}) \ s_0 \ \Rightarrow \ G \ s_0} \mathsf{EVNTLY-LATER}$$

Notation

Abstract Automata

Abstract Automaton Components

```
(abstract state, t) abstate : Set
(abstraction invariant, inv t s) inv : abstate \rightarrow state \rightarrow Prop
(step abstraction, t \stackrel{G}{\leadsto} t') abstep : abstate \rightarrow abstate \rightarrow saction \rightarrow Prop
```

Simulation Properties

```
invstep_inv: \forall t, s, s'. (inv t s \land s \leadsto s') \Rightarrow \exists t', G. (t \stackrel{G}{\leadsto} t' \land \text{inv } t' s')

abstep_sane: \forall t, t', G. t \stackrel{G}{\leadsto} t' \Rightarrow \exists s, s'. inv t s \land \text{inv } t' s' \land s \leadsto s'

abstep_inv: \forall s, s', t, t', G. inv t s \land \text{inv } t' s' \land s \leadsto s' \land t \stackrel{G}{\leadsto} t' \Rightarrow G s s'
```

☐ and ♦ Rules

(labeling environment)
$$\Gamma := \cdot | \Gamma, (t : G)$$

$$\frac{\forall s. \text{ inv } t s \Rightarrow G s s}{\Gamma \vdash (\lozenge G) t} \lozenge \text{NOW} \qquad \frac{\forall t', H. \ t \overset{H}{\leadsto} t' \Rightarrow \Gamma \vdash (\lozenge G') \ t'}{\Gamma \vdash (\lozenge G) \ t} \lozenge \text{LATER}$$

$$\forall s. \text{ inv } t s \Rightarrow G s s$$

$$(t:G') \in \Gamma$$

$$G' \Rightarrow G$$

$$\Gamma \vdash (\Box G) t$$

$$\Box ENV$$

$$\forall t', H. \ t \stackrel{H}{\leadsto} t' \Rightarrow \Gamma, (t:G) \vdash (\Box G') \ t'$$

$$(G' \circ H) \Rightarrow G$$

$$\Gamma \vdash (\Box G) t$$

Theorems

For all G, t, and s:

$$\frac{\cdot \vdash (\lozenge G) \ t \quad \text{inv } t \ s}{(\mathcal{F} \ G) \ s} \lozenge \text{-SOUND} \qquad \frac{\cdot \vdash (\Box G) \ t \quad \text{inv } t \ s}{(\mathcal{A} \ G) \ s} \Box \text{-SOUND}$$

The latter depends on a lemma, for all G, t, Γ, s, s' , and n:

$$\frac{\Gamma \vdash (\Box G) \ t \qquad \text{inv } t \ s \qquad s \leadsto^n s' \qquad \text{wf_env } \Gamma}{G \ s \ s'} \Box_{\mathsf{INV}}$$

Termination

$$\frac{\forall s. \; \mathrm{lpinv} \; s_0 \; s \; \Rightarrow \; (P \; \vee \; (\mathcal{F} \; (\mathrm{lpinv} \; \wedge \; H))) \; s}{(\mathcal{F} \; (\mathrm{lpinv} \; \wedge \; \overline{P})) \; s_0} \mathcal{F}\text{-TERM}$$

$$\frac{\forall s. \; \mathrm{lpinv} \; s_0 \; s \; \Rightarrow \; (P \; \vee \; (G \; \mathcal{U} \; (G \; \wedge \; \mathrm{lpinv} \; \wedge \; H))) \; s}{(G \; \mathcal{U} \; (\mathrm{lpinv} \; \wedge \; \overline{P})) \; s_0} \; \; (\mathcal{U}\text{-TERM})$$

where,

P: spred

H: saction, is a well-founded relation

lpinv: saction, is reflexive and transitive, and

G: saction, is a transitive relation

Idealized Processor Model

State Components

```
(addresses, words) pc, f, w, k := 0, 1, 2, 3, ...

(register file) \mathbb{R} := {\mathbf{r}_0 \mapsto w_0, \mathbf{r}_1 \mapsto w_1, \dots, \mathbf{r}_n \mapsto w_n}

(commands) c := movi \mathbf{r}_i w | dec \mathbf{r}_i | bz \mathbf{r}_i f | goto f | nop | ... | is (code memory) \mathbb{C} := {0 \mapsto c_0, 1 \mapsto c_1, 2 \mapsto c_2, \dots}

(state) \mathbb{S} := (\mathbb{C}, \mathbb{R}, pc, k)
```

Step Relation

$(\mathbb{C},\mathbb{R},pc,k) \rightsquigarrow \mathbb{S}'$			
if $\mathbb{C}(pc) =$	and $S' =$		
movi r _i w	$(\mathbb{C},\mathbb{R}\{\mathbf{r}_i\mapsto w\},pc+1,k+1)$		
dec r _i	$(\mathbb{C}, \mathbb{R}\{\mathbf{r}_i \mapsto (\mathbb{R}(\mathbf{r}_i) - 1)\}, pc + 1, k + 1)$		
bz r _i f	$(\mathbb{C},\mathbb{R},f,k+1)$ if $\mathbb{R}(\mathbf{r}_i)=0$		
bz r _i f	$(\mathbb{C}, \mathbb{R}, pc+1, k+1)$ if $\mathbb{R}(\mathbf{r}_i) > 0$		
goto f	$(\mathbb{C},\mathbb{R},f,k+1)$		
nop	$(\mathbb{C},\mathbb{R},pc+1,k+1)$		
illegal	$(\mathbb{C},\mathbb{R},pc,k+1)$		

Example (I)

Program and Abstraction Invariant

(To reduce notational clutter, r_i and r_i' represent $\mathbb{R}(r_i)$ and $\mathbb{R}'(r_i)$, respectively.)

f	$\mathbb{C}_0(f)$	inv $f(\mathbb{C}, \mathbb{R}, pc, k) \stackrel{\Delta}{=} (pc = f \land \mathbb{C} = \mathbb{C}_0 \land P),$ where P is
0	f0: movi r1 1	$r_1 = 0 \land r_2 = 0$
1	movi r2 10	$r_1 = 1 \wedge r_2 = 0$
2	f1: bz r2 f2	$r_1 = 1 \wedge r_2 \le 10$
3	dec r2	$r_1 = 1 \land r_2 \le 10 \land r_2 > 0$
4	goto fl	$r_1 = 1 \land r_2 \le 10$
5	f2: nop	$r_1 = 1 \wedge r_2 = 0$
6	movi r1 0	$r_1 = 1 \wedge r_2 = 0$
7	movi r2 10	$r_1 = 0 \wedge r_2 = 0$
8	f3: bz r2 f4	$r_1 = 0 \land r_2 \le 10$
9	dec r2	$r_1 = 0 \land r_2 \le 10 \land r_2 > 0$
10	goto f3	$r_1 = 0 \land r_2 \le 10$
11	f4: goto f0	$r_1 = 0 \wedge r_2 = 0$
≥ 12	ill	False

Example (I)

Step Abstraction

$f_0 \stackrel{G}{\leadsto} f_1$, where			
f_0	<i>f</i> ₁	$G\left(\mathbb{C},\mathbb{R},pc,k ight)\left(\mathbb{C}',\mathbb{R}',pc',k' ight)$	
0	1	$k' = k + 1 \land r'_1 = 1 \land r'_i = r_i, i \neq 1$	
1	2	$k' = k + 1 \land r'_2 = 10 \land r'_i = r_i, i \neq 2$	
2	3	$k' = k+1 \ \land \ r_2 > 0 \ \land \ r'_i = r_i$	
2	5	$k' = k+1 \ \land \ \mathbf{r_2} = 0 \ \land \ \mathbf{r'_i} = \mathbf{r_i}$	
3	4	$k' = k + 1 \land r'_2 = r_2 - 1 \land r'_i = r_i, i \neq 2$	
4	2	$k' = k + 1 \wedge r_i' = r_i$	
5	6	$k' = k + 1 \wedge r'_i = r_i$	
		•••	

Sample Property

$$\left(\mathcal{N}\left(\mathcal{F}\left(\mathbf{r}_{1}^{\prime}=0\ \wedge\ k^{\prime}=34+k\right)\right)\right)\mathbb{S}_{0}.$$

That is, from every next state of \mathbb{S}_0 , a state is eventually reached where the value of $\mathbb{R}'(r_1)$ is 0 and the clock is incremented by 34 cycles.

Applying the \mathcal{F} -TERM rule:

$$P(\mathbb{C}, \mathbb{R}, pc, k) \stackrel{\triangle}{=} \mathbb{R}(\mathbf{r}_2) = 0$$

 $H(\mathbb{C}, \mathbb{R}, pc, k) (\mathbb{C}', \mathbb{R}', pc', k') \stackrel{\triangle}{=} \mathbb{R}'(\mathbf{r}_2) = \mathbb{R}(\mathbf{r}_2) - 1$
 $\operatorname{lpinv}(\mathbb{C}, \mathbb{R}, pc, k) (\mathbb{C}', \mathbb{R}', pc', k')$

$$\overset{\triangle}{=} \mathbb{C}' = \mathbb{C} \land \textit{pc}' = \textit{pc} \land \mathbb{R}'(\mathbf{r}_1) = \mathbb{R}(\mathbf{r}_1) \land \textit{k}' = \textit{k} + 3 \times (\mathbb{R}(\mathbf{r}_2) - \mathbb{R}'(\mathbf{r}_2))$$

H holds between successive iterations of the loop and is well-founded. Ipinv relates the initial state at the beginning of the loop to the state at the top of the loop in every future iteration.