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Context: Proof-Carrying Code

Proof-Carrying Code (PCC)
@ Executable code packaged with a formalized proof of
safety
@ Selling points

e Code consumer is provided static proof object (origin of
code/proof is irrelevant)
e Proof applies directly to binary machine code
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Proof Properties

@ Current PCC research focuses only on safety properties
o Safety property: proposition that a certain state always or
never holds
@ This work

e Consider how to certify more general correctness
properties (liveness, deadlock-freeness, fairness in
temporal logic terminology)
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@ Coq proof assistant

e Higher-order predicate logic with inductive definitions
e Used to encode alll definitions and proofs

@ Temporal logic
e Formalism for properties involving a notion of time
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Approach

@ Encode machine “syntax” and semantics in Coq (standard)

@ Encode temporal logic operators in Coq (derive “inference
rules”)

@ Mechanism for building an “abstract automaton” based on
a specific program

@ Develop rules for reasoning about global properties
(invariants) and eventuality properties (termination)
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Sample: Counter Program

0 fO0: movi rl 1
1 movi r2 10
2 fl: bz r2 f2

3 dec r2

4 goto f1l

5 f2: nop

6

movi rl O
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Automaton Abstraction
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Related Work

@ Proof-carrying code [Necula 1997; Appel et al. 2001;
Hamid et al. 2003; Yu et al. 2004]

@ Temporal logic and PCC [Bernard/Lee 2002; Henzinger
2002]

@ Temporal logic in Coq [Coupet-Grimal 2003; Tsai/Wang
2008]

@ Termination ...
@ Temporal proof generation . ..
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Future Work

@ Add nondeterminism in machine model (hardware
interrupts)
@ Address scalability/level of automation

e Proof-generating model checker, or something similar
e Derive annotations for program points from high-level
source code
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Thank you!

nadeem@acm.org

Prototype development in Coq:
http://cs.berry.edu/~nhamid/pubs/minipic.coq.tgz
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Temporal Operators

>

(NG)SO VS1.SOWS1=>GSoS1

(G holds on every state that steps from Sp.)

VSo. 3si € 5. G Sp S

(Along every path from Sp, there is eventually a state
s; such that G s S;.)

VSo. VS; € So. G So Si

(Every state s; along every path from Sy satisfies
G sy si.)

VSo.3si € So. HSy sj A Vj <i.Vs € 8. Gsp
(Along every path from Sp, there is eventually a state
s; such that H Sg §;, and for every state S; preceding S;
in the path, G Sg s; holds.)

>

(.7: G) So

>

(A G)so

>

(GU H) s
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Temporal Operator Rules

G So So (step o G) Sy = G So

(ALWAYS-LATER)

(A G) so
V81. 8y ~ 8§ = (.7: G/) Sq
Gso s G ostep) S = G s
220 EyNTLY-NOW (G o step) So 0 EVNTLY-LATER
(F G) so (F G) s
Notation
P=Q £ Vs Ps= Qs (P:>O)sé Ps = Qs
(PN Qs 2 PsAQs (PVv Qs 2 PsvaQs
Pss 2 Pg (lift state predicate to action)
G=H 2 Vs, s'.Gss = Hs¢s
(GoH)ss 2 3s".Hss" A Gs's
(GAH)ss 2 Hss AGss
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Abstract Automata

Abstract Automaton Components

(abstract state, t) abstate : Set
(abstraction invariant, inv t S) inv : abstate — state — Prop

(step abstraction, t Sy ) abstep : abstate — abstate — saction — Prop

Simulation Properties

invstep_inv : V£, 5, 8. (invt S A S~ &) = I, G (t2t A vt s)
abstep_sane : Vi, ', G. tlt = ds,s’.invis Ainvt' 8 A s~ &
abstep_inv : Vs, 8, t,t/,G.invts A invt' 8 A s~ 8 A tSt¢ = Gs¢
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O and $ Rules

(labeling environment) T = -|T,(t: G)

VU H S = TH(0G) Y

Vs.invts = GsSS (GoH) = G
ONOW OQLATER
r=(©a)t M- (0G) t
Vs.invts = GsSS
(t:G)erl VU H. t 51 = T (t:G) - (OG) ¢
G = G (GoH) = G
———[JENV OSTEP
r-(0G)t M- (OG) t
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Theorems

For all G, t, and s:

-F(0G) t inv t S()-SOUND -H(OG) ¢t invts

O-so
(FG)s (AG)s UND

The latter depends on a lemma, for all G, t,T, s, s’, and n:

r=(@G)t invts s~"s  wfenvl

O INV
Gsés -

Nadeem Abdul Hamid Temporal Reasoning for Machine Code



Termination

Vs. Ipinv s § = (P Vv (F (lpinv A H))) s
(F (Ipinv A P)) s

F-TERM

Vs.Ipinvsy s = (P VvV (GU (G A lpinv A H))) s
(GU (Ipinv A P)) s

(U-TERM)

where,
P : spred
H : saction, is a well-founded relation
Ipinv : saction, is reflexive and transitive, and
G : saction, is a transitive relation
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Idealized Processor Model

State Components

(addresses, words) pc, f,w, k :=0,1,2,3, ...
(register file) R := {ro — Wo, 11 — Wy, ...,1n — Wy}
(commands) ¢ :=movir; W |decr; | bzr; f|gotof|nop| ... |]
(code memory) C := {0 +— ¢p,1+— €,2 — Cp,...}
(state) S := (C, R, pc, k)

Step Relation

(C,R,pc, k) ~~ S
if C(pc)= | and S'=
movi r; W (C,R{rj— w},pc+1,k+1)
dec r; (C,R{rj — (R(r;) — 1)}, pc+ 1,k + 1)
bzr; f (C,R,f,k+1) ifR(r;)=0
bzr; f (C,R,pc+1,k+1) ifR(r;) >0
goto f (C,R,f,k+1)
nop (C,R,pc+1,k+1)
illegal (C,R,pc,k+1)
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Example (1)

Program and Abstraction Invariant
(To reduce notational clutter, r; and r} represent R(r;) and R'(r;), respectively.)

f Co(f) inv f (C,R,pc,k) 2 (pc=f A C=Co A P),
where P is

0 f0: movi rl 1 rn=0Ar2=0

1 movi r2 10 ri=1Ar=0

2 fl: bz r2 f2 rn=1Ar. <10

3 dec r2 rn=1Ar<10Ar2 >0

4 goto f1 rn=1Ar <10

5 £f2: nop rn=1Ar,=0

6 movi rl 0 rn=1Ar.=0

7 movi r2 10 r1=0Ar=0

8 £3: bz r2 f4 rn=0Ar. <10

9 dec r2 n=0Ar<10Ar2 >0

10 goto £3 rn=0Ar <10

11 f4: goto fO r1r=0Ar=0

>12 ill False
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Example (1)

Step Abstraction

G
fo ~ fi, where

fo fy G((C,R,pc,k) ((C/,R’,pc/,k’)

0 1 K=k+1Ari=1AT1=m1,1#1

1| 2 | K=k+1A=10AT =1, i#2
2 3 K=k+1A1>0AT1=r1

2 5 K=k+1 Arn=0Ar1=r1

3 4 K=k+1 Amp=to—1 Ar1i=1)i#2
4 2 K=k+1A1=15

5 6 K=k+1Ar1i=r
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Sample Property

WN (F (rfy =0 A k' =34+ k))) So.

That is, from every next state of Sy, a state is eventually reached
where the value of R'(r1) is 0 and the clock is incremented by 34
cycles.

Applying the F-TERM rule:

P(C,R.pc,K) £ R(rz) =0

H(C,R, pc, k) (C',R’, pc’, k') 2 R'(r2) = R(rp) — 1
Ipinv(C, R, pc, k) (C',R’, pc’, k")

2 ¢ =CApc =pcAR () =R(r) AK =Kk+3x(R(rz)—R'(rz))
H holds between successive iterations of the loop and is
well-founded. lpinv relates the initial state at the beginning of the loop
to the state at the top of the loop in every future iteration.
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