Temporal Reasoning for Machine Code

Nadeem Abdul Hamid

Berry College
Mount Berry, Georgia, U.S.A.
nadeem@acm.org

November 27, 2008
15th Int’l Conference on Logic for Programming, Artificial
Intelligence and Reasoning

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Context: Proof-Carrying Code

Proof-Carrying Code (PCC)
@ Executable code packaged with a formalized proof of
safety
@ Selling points

e Code consumer is provided static proof object (origin of
code/proof is irrelevant)
e Proof applies directly to binary machine code

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Proof Properties

@ Current PCC research focuses only on safety properties
o Safety property: proposition that a certain state always or
never holds
@ This work

e Consider how to certify more general correctness
properties (liveness, deadlock-freeness, fairness in
temporal logic terminology)

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

@ Coq proof assistant

e Higher-order predicate logic with inductive definitions
e Used to encode alll definitions and proofs

@ Temporal logic
e Formalism for properties involving a notion of time

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Approach

@ Encode machine “syntax” and semantics in Coq (standard)

@ Encode temporal logic operators in Coq (derive “inference
rules”)

@ Mechanism for building an “abstract automaton” based on
a specific program

@ Develop rules for reasoning about global properties
(invariants) and eventuality properties (termination)

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Sample: Counter Program

0 fO0: movi rl 1
1 movi r2 10
2 fl: bz r2 f2

3 dec r2

4 goto f1l

5 f2: nop

6

movi rl O

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

(0]
(@)
o
T
E
©
g
(@)}
(@)
st
o

@ (program counter, registers)

—

e e e e e e e

~— O~ ~— — ~— ~— ~— ~— .

EE T T T T A T

Q
el
o
(@]
[0
£
<
[}
[
=
5
j=)}
£
z
(=]
(2]
(1]
Q
o
=
[
o
Q.
5
°

Nadeem Abdul Hamid

Automaton Abstraction

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Related Work

@ Proof-carrying code [Necula 1997; Appel et al. 2001;
Hamid et al. 2003; Yu et al. 2004]

@ Temporal logic and PCC [Bernard/Lee 2002; Henzinger
2002]

@ Temporal logic in Coq [Coupet-Grimal 2003; Tsai/Wang
2008]

@ Termination ...
@ Temporal proof generation . ..

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Future Work

@ Add nondeterminism in machine model (hardware
interrupts)
@ Address scalability/level of automation

e Proof-generating model checker, or something similar
e Derive annotations for program points from high-level
source code

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Thank you!

nadeem@acm.org

Prototype development in Coq:
http://cs.berry.edu/~nhamid/pubs/minipic.coq.tgz

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Temporal Operators

>

(NG)SO VS1.SOWS1=>GSoS1

(G holds on every state that steps from Sp.)

VSo. 3si € 5. G Sp S

(Along every path from Sp, there is eventually a state
s; such that G s S;.)

VSo. VS; € So. G So Si

(Every state s; along every path from Sy satisfies
G sy si.)

VSo.3si € So. HSy sj A Vj <i.Vs € 8. Gsp
(Along every path from Sp, there is eventually a state
s; such that H Sg §;, and for every state S; preceding S;
in the path, G Sg s; holds.)

>

(.7: G) So

>

(A G)so

>

(GU H) s

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Temporal Operator Rules

G So So (step o G) Sy = G So

(ALWAYS-LATER)

(A G) so
V81. 8y ~ 8§ = (.7: G/) Sq
Gso s G ostep) S = G s
220 EyNTLY-NOW (G o step) So 0 EVNTLY-LATER
(F G) so (F G) s
Notation
P=Q £ Vs Ps= Qs (P:>O)sé Ps = Qs
(PN Qs 2 PsAQs (PVv Qs 2 PsvaQs
Pss 2 Pg (lift state predicate to action)
G=H 2 Vs, s'.Gss = Hs¢s
(GoH)ss 2 3s".Hss" A Gs's
(GAH)ss 2 Hss AGss

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Abstract Automata

Abstract Automaton Components

(abstract state, t) abstate : Set
(abstraction invariant, inv t S) inv : abstate — state — Prop

(step abstraction, t Sy) abstep : abstate — abstate — saction — Prop

Simulation Properties

invstep_inv : V£, 5, 8. (invt S A S~ &) = I, G (t2t A vt s)
abstep_sane : Vi, ', G. tlt = ds,s’.invis Ainvt' 8 A s~ &
abstep_inv : Vs, 8, t,t/,G.invts A invt' 8 A s~ 8 A tSt¢ = Gs¢

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

O and $ Rules

(labeling environment) T = -|T,(t: G)

VU H S = TH(0G) Y

Vs.invts = GsSS (GoH) = G
ONOW OQLATER
r=(©a)t M- (0G) t
Vs.invts = GsSS
(t:G)erl VU H. t 51 = T (t:G) - (OG) ¢
G = G (GoH) = G
———[JENV OSTEP
r-(0G)t M- (OG) t

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Theorems

For all G, t, and s:

-F(0G) t inv t S()-SOUND -H(OG) ¢t invts

O-so
(FG)s (AG)s UND

The latter depends on a lemma, for all G, t,T, s, s’, and n:

r=(@G)t invts s~"s wfenvl

O INV
Gsés -

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Termination

Vs. Ipinv s § = (P Vv (F (lpinv A H))) s
(F (Ipinv A P)) s

F-TERM

Vs.Ipinvsy s = (P VvV (GU (G A lpinv A H))) s
(GU (Ipinv A P)) s

(U-TERM)

where,
P : spred
H : saction, is a well-founded relation
Ipinv : saction, is reflexive and transitive, and
G : saction, is a transitive relation

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Idealized Processor Model

State Components

(addresses, words) pc, f,w, k :=0,1,2,3, ...
(register file) R := {ro — Wo, 11 — Wy, ...,1n — Wy}
(commands) ¢ :=movir; W |decr; | bzr; f|gotof|nop| ... |]
(code memory) C := {0 +— ¢p,1+— €,2 — Cp,...}
(state) S := (C, R, pc, k)

Step Relation

(C,R,pc, k) ~~ S
if C(pc)= | and S'=
movi r; W (C,R{rj— w},pc+1,k+1)
dec r; (C,R{rj — (R(r;) — 1)}, pc+ 1,k + 1)
bzr; f (C,R,f,k+1) ifR(r;)=0
bzr; f (C,R,pc+1,k+1) ifR(r;) >0
goto f (C,R,f,k+1)
nop (C,R,pc+1,k+1)
illegal (C,R,pc,k+1)

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Example (1)

Program and Abstraction Invariant
(To reduce notational clutter, r; and r} represent R(r;) and R'(r;), respectively.)

f Co(f) inv f (C,R,pc,k) 2 (pc=f A C=Co A P),
where P is

0 f0: movi rl 1 rn=0Ar2=0

1 movi r2 10 ri=1Ar=0

2 fl: bz r2 f2 rn=1Ar. <10

3 dec r2 rn=1Ar<10Ar2 >0

4 goto f1 rn=1Ar <10

5 £f2: nop rn=1Ar,=0

6 movi rl 0 rn=1Ar.=0

7 movi r2 10 r1=0Ar=0

8 £3: bz r2 f4 rn=0Ar. <10

9 dec r2 n=0Ar<10Ar2 >0

10 goto £3 rn=0Ar <10

11 f4: goto fO r1r=0Ar=0

>12 ill False

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Example (1)

Step Abstraction

G
fo ~ fi, where

fo fy G((C,R,pc,k) ((C/,R’,pc/,k’)

0 1 K=k+1Ari=1AT1=m1,1#1

1| 2 | K=k+1A=10AT =1, i#2
2 3 K=k+1A1>0AT1=r1

2 5 K=k+1 Arn=0Ar1=r1

3 4 K=k+1 Amp=to—1 Ar1i=1)i#2
4 2 K=k+1A1=15

5 6 K=k+1Ar1i=r

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

Sample Property

WN (F (rfy =0 A k' =34+ k))) So.

That is, from every next state of Sy, a state is eventually reached
where the value of R'(r1) is 0 and the clock is incremented by 34
cycles.

Applying the F-TERM rule:

P(C,R.pc,K) £ R(rz) =0

H(C,R, pc, k) (C',R’, pc’, k') 2 R'(r2) = R(rp) — 1
Ipinv(C, R, pc, k) (C',R’, pc’, k")

2 ¢ =CApc =pcAR () =R(r) AK =Kk+3x(R(rz)—R'(rz))
H holds between successive iterations of the loop and is
well-founded. lpinv relates the initial state at the beginning of the loop
to the state at the top of the loop in every future iteration.

Nadeem Abdul Hamid Temporal Reasoning for Machine Code

