
A Formalised Lower Bound

on Undirected Graph Reachability

Ulrich Schöpp
University of Munich

Computer Aided Formal Reasoning

Computer assistance in our everyday work?

correctness

revalidation after changes

•

•

bookkeeping for complicated technical details •

Computer Aided Formal Reasoning

Computer assistance in our everyday work?

correctness

revalidation after changes

•

•

bookkeeping for complicated technical details •

Theorem prover technology is getting to a point where

it is useful in practice for proving theorems.

programming language theory: POPLMark•

four colour theorem•

Today: case study from structural complexity theory

Context

Formalised proofs in my current work with Martin Hofmann

Expressivity of Pointer Programs on Graphs

graph as a structured, read-only input

while-language with boolean variables and

pointer variables

various constructs for pointer manipulation

(operations of the input structure succi, iteration, etc.)

•

•

•

s t

Pointer Programs and
Undirected s-t-Reachability

iteration over all nodes (~ Java Iterator)

counting registers (~ Java int)

pure pointer algoritms (only succi)

+

+

+ pointer arithmetic (~ C int)

Pointer Programs and
Undirected s-t-Reachability

iteration over all nodes (~ Java Iterator)

counting registers (~ Java int)

pure pointer algoritms (only succi)

+

+

+ pointer arithmetic (~ C int)

> Deterministic Transitive Closure (DTC)

 Logic

= Jumping Automata on Graphs (JAGs)

= LOGSPACE

= RAM-JAG

Pointer Programs and
Undirected s-t-Reachability

iteration over all nodes (~ Java Iterator)

counting registers (~ Java int)

pure pointer algoritms (only succi)

+

+

+ pointer arithmetic (~ C int)

> Deterministic Transitive Closure (DTC)

 Logic

= Jumping Automata on Graphs (JAGs)

= LOGSPACE

= RAM-JAG

Cook & Rackoff
1980

Reingold 2005

Sch. & Hofmann
2008

Pointer Programs and
Undirected s-t-Reachability

iteration over all nodes (~ Java Iterator)

counting registers (~ Java int)

pure pointer algoritms (only succi)

+

+

+ pointer arithmetic (~ C int)

> Deterministic Transitive Closure (DTC)

 Logic

= Jumping Automata on Graphs (JAGs)

= LOGSPACE

= RAM-JAG

Cook & Rackoff
1980

Reingold 2005

Sch. & Hofmann
2008

Proof uses a generalisation
of Cook & Rackoff's result
which we have developed
using Coq.

Improving the Result of

Cook & Rackoff

Jumping Automata on Graphs

automaton can see whether or not

two pebbles are on the same

graph node

•

•

•

can move one pebble per step•

move pebble along edge•

jump pebble to another one•

1
2

3
4

Improving Cook & Rackoff's Result

Improving Cook & Rackoff's Result

Outline of Cook & Rackoff's Proof

If the actions of the JAG become periodic then a full
configuration will be repeated not long after.

When are Actions Repeated?

behaviour = list of actions the JAG makes•

JAG repeats actions after at most #behaviours steps•

Estimate the number of different behaviours of a JA

Analysis of Behaviour

some pebble collisions give JAG information•

only relative pebble positions relevant•

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predicting Pebble Collisions

Keep track of known relative
pebble distances (difference vectors
throughout the course of the
computation.

Some pebble collisions can be predicted from the
computation history.

Predictable Steps

no collision of pebbles with unknown distance

State and distance vectors after the step are uniquely
determined from those before the step.

Non-Predictable Steps

collision of pebbles with unknown distance

Extended State

Extended State:

Establish a bound on the number of extended behaviours.

State of JAG + knowledge about relative distances

Extended Behaviour:

List of extended states the JAG assumes
from a starting configuration

Analysis

Induction on the number of non-predictable steps

Analysis

Generalisation

Action Graphs

The Formalisation

Formalisation in Coq

Coq is a very good tool to formalise this kind of proofs.

intensional equality •

intuitionistic logic•

dependent types, expressive programming language•

Coq

to formalise:

counting arguments•

proofs with classical logic•

Proof by Programming

How to to formalise the counting arguments?

prove correctness of the program•

data types often finite with decidable equalit

(here: graphs, configurations

write program that enumerates all objects with a

certain property (as a list)

•

•

→ proof by programming

Coq is perhaps the best currently available tool for

combining programs and proofs.

Reflection

Combine logical inference with program evaluation

ideally: f(M) evaluates to true•

bool-valued functions instead of predicates

combine f with logical property P

•

•

to show P(M) it suffices to show f(M) = true•

f : A -> bool

f(x) = true -> P(x)

f(x) = false -> ~P(x)

to show P(M) it then suffices to show true = true•

Reflection

automatic simplification of expressions by computation

•

•

Reflection can be seen as a mechanism of writing tactic
within the logic

Small Scale Reflection in Coq

Reflection is useful on a small scale•

Library for working with finite data type

Concise tactic language

SSReflect in Co

Geoges Gonthier, proof of the four colour theorem

Very well suited for proving by programming.

Views (switch between predicates and functions)

Implicit coercions (e.g. can use f like a logical predicate)

Rewriting

•

•

•

•

•

Finite Data Types

Finite data types are easy to work with

excellent existing library•

typical example:•

complicated types easy to integrate•

finite function

represented by graph•

coercion to and from

normal functions

•

finite equivalence relation

represented by

choice function

•

coercion to and from

normal relations

•

•

quotients•

Classical Logic, Extensionality

Intuitionistic logic, intensional equality not an issue.

classical reasoning for bool-valued predicates •

extensional, decidable equality for finite functions •

quotients of finite equivalence relations •

Lemma pigeon: forall (d1 d2:finType) (f:d1->d2)
 (card d2 < card d1) -> (exists x:d1, exists y:d1, (x != y) && (f x == f y)).
Proof.
move=>d1 d2 f I.
case: (pickP (fun xy => ((xy.1) != (xy.2)) && (f (xy.1) == f (xy.2))))=>[[x y] /=m|e].
 by exists x; exists y.
 have V: (injective f).
 move=>x y E.
 move: (e (x, y))=>/=; move/nandP=>[H1|H2].
 by apply/eqP; apply: negbE2.
 by rewrite E eq_refl in H2
 have W: (card d1) <= (card d2) by apply: (injective_card V).
 have C: (card d1) < (card d1).
 by rewrite -(leq_add2l 1) !add1n in W; apply: (leq_trans W I).
 by rewrite ltnn in C.
Qed.

Formalising the Analysis

Definition R (k n : nat): nat :
 card (quotient (equiv k n)).

equiv (k n: nat): (conf ...) -> (conf ...) -> bool

Definition A (k n : nat): nat :
 max (fun C=> card (evolution_to_coal k n C)).

Formalisation

~5000 lines of code in SSReflect tactic language•

reasonable amount of additional work for defining

finite functions, quotients, ...

•

arithmetic calculations done by hand•

SSReflect and libraries very well suited to task•

reflection essential•

quite close to the informal proof•

Conclusion

verification down to the last detail

structuring proofs

•

•

Formal proof in structural complexity theory

encapsulation of technical details in abstractions•

reflection works very well for this kind of proofs•

Endliche Datentypen

Typen mit entscheidbarer Gleichheit

Endliche Typen

Record eqType : Type := EqType {
 sort :> Type;
 eq : sort -> sort -> bool;
 _ : forall x y:sort, reflect (x=y) (eq x y)
}.

Record finType : Type := FinType
 sort :> eqType;
 enum : seq sort;
 enumP : forall x, count (pred1 x) enum = 1
}.

