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Theorem prover technology is getting to a point where

it is useful in practice for proving theorems. 

programming language theory: POPLMark•

four colour theorem•

Today: case study from structural complexity theory



Context

Formalised proofs in my current work with Martin Hofmann

Expressivity of Pointer Programs on Graphs

graph as a structured, read-only input

while-language with boolean variables and 

pointer variables

various constructs for pointer manipulation

(operations of the input structure succi, iteration, etc.)

•

•

•

s t
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Proof uses a generalisation
of Cook &  Rackoff's result
which we have developed 
using Coq.



Improving the Result of 

Cook &  Rackoff



Jumping Automata on Graphs

automaton can see whether or not

two pebbles are on the same 

graph node

•

•

•

can move one pebble per step•

move pebble along edge•

jump pebble to another one•

1
2

3
4
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Outline of Cook &  Rackoff's Proof

If the actions of the JAG  become periodic then a full
configuration will be repeated not long after.



When are Actions Repeated?

behaviour = list of actions the JAG makes•

JAG repeats actions after at most #behaviours steps•

Estimate the number of different behaviours of a JA

Analysis of Behaviour

 
some pebble collisions give JAG information•

 

 
only relative pebble positions relevant•
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Predictable Steps

no collision of pebbles with unknown distance

State and distance vectors after the step are uniquely
determined from those before the step.



Non-Predictable Steps

collision of pebbles with unknown distance



Extended State

Extended State: 

Establish a bound on the number of extended behaviours. 

State of JAG + knowledge about relative distances 

Extended Behaviour: 

List of extended states the JAG assumes 
from a starting configuration



Analysis

Induction on the number of non-predictable steps



Analysis



Generalisation



Action Graphs



The Formalisation



Formalisation in Coq

Coq is a very good tool to formalise this kind of proofs.

intensional equality •

intuitionistic logic•

dependent types, expressive programming language•

Coq

to formalise:

counting arguments•

proofs with classical logic•



Proof by Programming

How to to formalise the counting arguments?

prove correctness of the program•

data types often finite with decidable equalit

(here: graphs, configurations

write program that enumerates all objects with a 

certain property (as a list)

•

•

→ proof by programming

Coq is perhaps the best currently available tool for 

combining programs and proofs.



Reflection

Combine logical inference with program evaluation

ideally: f(M) evaluates to  true•

bool-valued functions instead of predicates

combine f with logical property P

•

•

to show P(M) it suffices to show f(M) = true•

f : A -> bool

f(x) = true -> P(x)

f(x) = false -> ~P(x)

to show P(M) it then suffices to show true = true•



Reflection

automatic simplification of expressions by computation

•

•

Reflection can be seen as a mechanism of writing tactic
within the logic



Small Scale Reflection in Coq

Reflection is useful on a small scale•

Library for working with finite data type

Concise tactic language

SSReflect in Co

Geoges Gonthier, proof of the four colour theorem

Very well suited for proving by programming.

Views (switch between predicates and functions)

Implicit coercions (e.g. can use f like a logical predicate)

Rewriting

•

•

•

•

•



Finite Data Types

Finite data types are easy to work with

excellent existing library•

typical example:•

complicated types easy to integrate•

finite function

represented by graph•

coercion to and from

normal functions

•

finite equivalence relation

represented by 

choice function

•

coercion to and from 

normal relations

•

•

quotients•



Classical Logic, Extensionality

Intuitionistic logic, intensional equality not an issue.

classical reasoning for bool-valued predicates  •

extensional, decidable equality for finite functions •

quotients of finite equivalence relations •

Lemma pigeon: forall (d1 d2:finType) (f:d1->d2)
   (card d2 < card d1) -> (exists x:d1, exists y:d1, (x != y) &&  (f x == f y)).
Proof.
move=>d1 d2 f I.
case: (pickP (fun xy => ((xy.1) != (xy.2)) &&  (f (xy.1) == f (xy.2))))=>[[x y] /=m|e].
 by exists x; exists y.
 have V: (injective f).
  move=>x y E.
  move: (e (x, y))=>/=; move/nandP=>[H1|H2].
  by apply/eqP; apply: negbE2.
  by rewrite E eq_refl in H2
 have W: (card d1) <= (card d2) by apply: (injective_card V).
 have C: (card d1) < (card d1).
  by rewrite -(leq_add2l 1) !add1n in W; apply: (leq_trans W I).
 by rewrite ltnn in C.
Qed.



Formalising the Analysis

Definition R (k n : nat): nat :
  card (quotient (equiv k n)).

equiv (k n: nat): (conf ...) -> (conf ...) -> bool

Definition A (k n : nat): nat :
   max (fun C=> card (evolution_to_coal k n C)).



Formalisation

~5000 lines of code in SSReflect tactic language•

reasonable amount of additional work for defining

finite functions, quotients, ...

•

arithmetic calculations done by hand•

SSReflect and libraries very well suited to task•

reflection essential•

quite close to the informal proof•



Conclusion 

verification down to the last detail

structuring proofs

•

•

Formal proof in structural complexity theory 

encapsulation of technical details in abstractions•

reflection works very well for this kind of proofs•



Endliche Datentypen

Typen mit entscheidbarer Gleichheit

Endliche Typen

Record eqType : Type := EqType {
  sort :> Type;
  eq : sort -> sort -> bool;
  _ : forall x y:sort, reflect (x=y) (eq x y)
}.

Record finType : Type := FinType 
  sort :> eqType;
  enum : seq sort;
  enumP : forall x, count (pred1 x) enum = 1
}.


