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Introduction: Propositional Interval Temporal Logics

Temporal logics, usually interpreted over linearly
ordered sets, where propositional letters are assigned
to intervals instead of points;
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Introduction: Propositional Interval Temporal Logics

Temporal logics, usually interpreted over linearly
ordered sets, where propositional letters are assigned
to intervals instead of points;

Relations between “worlds” are more complicate than
the point-based case, e.g.: before, after, during;

In the literature, they have been studied binary relations
between intervals, as well as ternary ones;

We focus on binary relations (i.e., unary modal
operators).
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Brief History of the Logics of Allen’s Relations

1986: Halpern and Shoham publish “A Propositional
Modal Logic of Time Intervals”, where a temporal logic
interpreted over linear orders with a modal operator for
each Allen’s relation is presented, and its undecidability
is shown;
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Brief History of the Logics of Allen’s Relations

1986: Halpern and Shoham publish “A Propositional
Modal Logic of Time Intervals”, where a temporal logic
interpreted over linear orders with a modal operator for
each Allen’s relation is presented, and its undecidability
is shown;

2000: Lodaya publish “Sharpening the Undecidability of
Interval Temporal Logic”, where the previous result is
strengthened to a very small fragment with only two
modal operators;

2005,2007: Bresolin, Goranko, Montanari and Sciavicco
present the first decidable fragment (PNL), generating a
natural question about whether is it possible to establish
a complete classification of all fragments;
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Brief History of the Logics of Allen’s Relations (Cont’d)

2007: Bresolin, Goranko, Montanari and Sala present
another, unrelated, decidable fragment (even if only
over dense orders);
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Brief History of the Logics of Allen’s Relations (Cont’d)

2007: Bresolin, Goranko, Montanari and Sala present
another, unrelated, decidable fragment (even if only
over dense orders);

2008: Bresolin, Goranko, Montanari and Sciavicco
show that most very small extensions of PNL are
undecidable with a non-trivial reduction from the Octant
Tiling Problem (publication accepted on Annals of Pure
and Applied Logics);

Now: we present a partial classification of the over 5000
different fragments, narrowing down the ‘unknown’
territory.
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Relations and Semantics

Op. Semantics

〈A〉 M, [a, b] 
 〈A〉φ ⇔ ∃c(b < c.M, [b, c] 
 φ)

〈L〉 M, [a, b] 
 〈L〉φ ⇔ ∃c, d(b < c < d.M, [c, d] 


φ)

〈B〉 M, [a, b] 
 〈B〉φ ⇔ ∃c(a ≤ c < b.M, [a, c] 


φ)

〈E〉 M, [a, b] 
 〈E〉φ ⇔ ∃c(a < c ≤ b.M, [c, b] 
 φ)

〈D〉 M, [a, b] 
 〈D〉φ ⇔ ∃c, d(a < c ≤ d <

b.M, [c, d] 
 φ)

〈O〉 M, [a, b] 
 〈O〉φ ⇔ ∃c, d(a < c ≤ b <

d.M, [c, d] 
 φ)

〈D〉⊏ M, [a, b] 
 〈D〉⊏φ ⇔ ∃c, d(a ≤ c ≤ d ≤
b.M, [c, d] 
 φ ∧ [c, d] 6= [a, b])

– p. 5/22



Counting the Fragments

Allen’s IA has 213 different sub-algebras, each one of
them has been classified by its tractability/untractability;
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Counting the Fragments

Allen’s IA has 213 different sub-algebras, each one of
them has been classified by its tractability/untractability;

Interval logic with unary operators has 12 modal
operators (14, if we include the non-standard 〈D〉⊏),
which leads to 212 (resp., 214) fragments to be classified
by its decidability/undecidability,. . .

. . . but we have possibility of narrowing this number by
using the inter-definability of operators, such as in the
cases of p = 〈A〉〈A〉p, or 〈D〉p = 〈B〉〈E〉p.
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Counting the Fragments (Cont’d)

Depending on the properties of the underlying linear
order (if it is dense, discrete, unbounded. . . ), one obtain
slightly different results;
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Counting the Fragments (Cont’d)

Depending on the properties of the underlying linear
order (if it is dense, discrete, unbounded. . . ), one obtain
slightly different results;

In general, there are about 5000 different fragments,
where by ‘different’ we mean that given the fragments F

and F ′, if F ⊂ F ′ (intended as sets of modalities), then
F ′ is strictly more expressive than F ;

Here we are particularly interested in undecidable
fragments, so we aim to consider the smallest possible
fragments;

For the sake of simplicity, we now consider only the
class of all linearly ordered sets, in the original,
non-strict semantics, that is, including point-intervals.
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An Overview

A possible way to look at the variety of fragments to be
classified is as follows:

HS(ABE, ABE)

µ
Undec

AA = PNL
µ

Dec

D(dense):

- BE(dense)
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Some New Undecidability Results

We showed last year that are undecidable:

AABE, AAEB, AAD
∗

where D∗ ∈ {D, D, D⊏, D⊏}, and in this paper we add

AD
∗
E, AD

∗
E, AD

∗
O, AD

∗
B, AD

∗
B, AD

∗
O

and
BE, BE, BE,
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We showed last year that are undecidable:

AABE, AAEB, AAD
∗

where D∗ ∈ {D, D, D⊏, D⊏}, and in this paper we add

AD
∗
E, AD

∗
E, AD

∗
O, AD

∗
B, AD

∗
B, AD

∗
O

and
BE, BE, BE,

The first and the second group differ for the technique
that has been used to achieve the result.
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Some New Undecidability Results (Cont’d)

More recently, we actually improved many of the new
results;

We now cover about the 75 % of all cases;

There is, anyway, some interesting fragment for which
we cannot even guess its decidability/undecidability,
such as AB;

Now, we give an idea of the techniques we used.
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The Idea - 1

We use a reduction from the O = N × N-tiling problem
(Octant Tiling Problem);
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The Idea - 1

We use a reduction from the O = N × N-tiling problem
(Octant Tiling Problem);

This is the problem of establishing whether a given
finite set of tile types T = {t1, . . . , tk} can tile
O = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j};

This problem can be shown to be undecidable by a
simple application of the König’s Lemma in the same
way as it was used to show the undecidability of the
N × N tiling problem from that of Z × Z;

By such a reduction, we prove R.E.-hardness of the
validity problem;
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The Idea - 2

We consider a signature containing, inter alia, the
special propositional letters u, tile, Id, t1, . . . , tk, bb, be,
eb, and corr;
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We set our framework by forcing the existence of a
unique infinite chain of so-called unit-intervals (for
short, u-intervals) on the linear order, which covers an
initial segment of the model;

The propositional letters ti,j represent tiles:
B1 = ¬u ∧ 〈A〉u ∧ [G](u →

(¬π ∧ 〈A〉u ∧ ¬〈D〉u ∧ ¬〈D〉〈A〉u)),
B2 = [G]

∧
p∈AP((p ∨ 〈A〉p) → 〈A〉u).
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The Idea - 3

Tiles are placed over unit intervals, there are never two
different tiles over the same unit, and the special
symbol * distinguishes one level from the next one:
B3 = [G](u ↔ (∗ ∨ tile)) ∧ [G](∗ → ¬tile) ∧ [G]¬(∗ ∧ 〈A〉∗),

B4 = [G](tile ↔ (
∨k

i=1 ti ∧
∧k

i,j=1,i 6=j ¬(ti ∧ tj))).
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The Idea - 3

Tiles are placed over unit intervals, there are never two
different tiles over the same unit, and the special
symbol * distinguishes one level from the next one:
B3 = [G](u ↔ (∗ ∨ tile)) ∧ [G](∗ → ¬tile) ∧ [G]¬(∗ ∧ 〈A〉∗),

B4 = [G](tile ↔ (
∨k

i=1 ti ∧
∧k

i,j=1,i 6=j ¬(ti ∧ tj))).

Ids are collections of tiles separated by exactly one *:
B5 = [G]((Id → (¬u ∧ 〈A〉Id ∧ ¬〈D〉〈A〉Id)))∧

[G](〈A〉Id ↔ 〈A〉∗),
B6 = 〈A〉(∗ ∧ 〈A〉(tile ∧ 〈A〉∗)),
B7 = B1 ∧ B2 ∧ B3 ∧ B4 ∧ B5 ∧ B6.
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The Idea -4

a) Interval representation

b) Cartesian representation

ti,j = i-th tile of the j-th Id-interval

Idi = i-th Id-interval

∗ t1,1 ∗ t1,2 t2,2 ∗ t1,3 t2,3 t3,3 ∗ t1,4 t2,4 t3,4 t4,4 ∗ . . . . . .

Id1 Id2 Id3 Id4 . . .

w

u

b3
4

b4
4

t1,1

t1,2 t2,2

t1,3 t2,3 t3,3

. . . . . . . . . . . .

1st level (Id1)

2nd level (Id2)

3rd level (Id3)

. . .
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The Idea - 5

The most difficult part is to force each Id to have the
right number of tiles;
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The Idea - 5

The most difficult part is to force each Id to have the
right number of tiles;

Moreover, we have to make sure that we are able to
step from a tile ti,j to the tile ti,j+1;

We codify this relation by means of three propositional
letters, namely bb (from the beginning point of a tile to
the beginning point of the corresponding tile above), be,
(beginning - ending), and eb (ending - beginning);

This helps us to formalize the intended properties of the
“above connection” relation by means of a weak
language.
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The Idea - 6

B8 = [G]((bb ∨ be ∨ eb) ↔ corr),
B9 = [G]¬(corr ∧ Id),

B10 = [G]((corr → ¬〈D〉Id) ∧ (Id → ¬〈D〉corr)),

B11 = [G]((corr → ¬〈A〉Id) ∧ (〈A〉(bb ∨ be) → ¬〈A〉Id)),
B13 = [G](〈A〉tile ↔ 〈A〉bb),
B14 = [A](〈A〉(tile ∧ 〈A〉tile) ↔ 〈E〉bb),
B15 = [G](〈A〉tile ↔ 〈A〉be),
B16 = [A]((〈E〉tile ∧ 〈A〉tile) ↔ 〈E〉be),
B17 = [G](u → (tile ↔ 〈A〉eb)),
B18 = [A](〈A〉(tile ∧ 〈A〉tile) ↔ 〈E〉eb),
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The Idea - 6 (Cont’d)

B20 = [G]
∧

c,c′∈{bb,eb,be},c 6=c′ ¬(c ∧ c′),
B21 = [G](bb → ¬〈D〉bb ∧ ¬〈D〉eb ∧ ¬〈D〉be),
B22 = [G](eb → ¬〈D〉bb ∧ ¬〈D〉eb ∧ ¬〈D〉be),
B23 = [G](be → 〈D〉eb ∧ ¬〈D〉bb ∧ ¬〈D〉be),
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The Idea -7

a) Interval representation

b) Cartesian representation

∗ t1,1 ∗ t1,2 t2,2 ∗ t1,3 t2,3 t3,3 ∗ t1,4 t2,4 t3,4 t4,4 ∗ . . . . . .

Id1 Id2 Id3 Id4 . . .

w

u

b
3
4

b
4
4

cbb

cbe
ceb

t1,1

t1,2 t2,2

t1,3 t2,3 t3,3

. . . . . . . . . . . .

1st level (Id1)

2nd level (Id2)

3rd level (Id3)

. . .
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The Idea - 8

Now, the relation defined as bb ∨ be ∨ eb is exactly the
“above correspondence” relation;
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The Idea - 8

Now, the relation defined as bb ∨ be ∨ eb is exactly the
“above correspondence” relation;

The “right correspondence” relation is simply the meets
operator;

The fundamental property is the commutativity of these
two relations! So, we have that

[G]((tile ∧ 〈A〉tile) →
∨

right(ti)=left(tj)
(ti ∧ 〈A〉tj)),

[G](〈A〉tile →
∨

up(ti)=down(tj)
(〈A〉ti ∧ 〈A〉(bb ∧ 〈A〉tj))).

encode exactly the Octant Tiling Problem.

– p. 19/22



More Considerations

As we have seen, about 25 formulas are needed in
order to complete this encoding;
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More Considerations

As we have seen, about 25 formulas are needed in
order to complete this encoding;

We were recently able to narrow the dimension of the
fragment, obtaining, for example, the undecidability of
AD alone;

This requires more than 50 formulas;

Besides the results in themselves, we find this
interesting as an expressivity exercise, which turns out
to be useful when we apply interval logics to practical
tasks.
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More Considerations (Cont’d)

Exactly as in the field of Interval Algebra it has been
done a great effort to complete the classification of all
fragments, our long-term objective is to complete the
classification of fragments of Interval Logics;
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More Considerations (Cont’d)

Exactly as in the field of Interval Algebra it has been
done a great effort to complete the classification of all
fragments, our long-term objective is to complete the
classification of fragments of Interval Logics;

Possibly, the main side-product of this classification will
be the identification of more expressive decidable
fragments, finally closing a 20-years-old open question;

It is also worth noticing that the decidable fragments
that have been found so far not only were not expected,
but also the techniques used to show decidability are
technically interesting.
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A Partial Classification

K BE BE AAD∗ AD∗E AD∗O AD∗B AD∗O AA D BB

Lin Und Und Und Und Und Und Und Dec ? Dec

Den Und Und Und Und Und Und Und Dec Den Dec

Dis Und Und Und Und Und Und Und Dec ? Dec

Classes containing only infinite ascending/descending
unbounded chains are omitted, as well as fragments
obtained by the above ones by symmetry. It basically
makes no difference to assume that point-intervals are
included/excluded, and, when are included and the
language does not allow to express a modal constant to
capture them, we did not find differences when such a
constant is included or not in the language explicitly.
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