Decidable and Undecidable Fragments ofHalpern and Shoham's Interval Temporal Logic:Towards ^a Complete ClassificationLPAR - 2008

Davide Bresolin, University of Verona (Italy)

Dario Della Monica, University of Udine (Italy)

Angelo Montanari, University of Udine (Italy)

Valentin Goranko, University of Witswatersrand (South Africa)

Guido Scia[vi](#page-0-0)ccoa , University of Murcia (Spain)

 a Guido Sciavicco was co-financed by the Spanish projects TIN 2006-15460-C04-01 and PET 2006₋0406.

• Temporal logics, usually interpreted over linearly ordered sets, where propositional letters are assignedto *intervals* instead of *points*;

- **•** Temporal logics, usually interpreted over linearly ordered sets, where propositional letters are assignedto *intervals* instead of *points*;
- Relations between "worlds" are more complicate than the point-based case, e.g.: before, after, during;

- **•** Temporal logics, usually interpreted over linearly ordered sets, where propositional letters are assignedto *intervals* instead of *points*;
- Relations between "worlds" are more complicate than the point-based case, e.g.: before, after, during;
- In the literature, they have been studied *binary* relations between intervals, as well as *ternary* ones;

- **•** Temporal logics, usually interpreted over linearly ordered sets, where propositional letters are assignedto *intervals* instead of *points*;
- Relations between "worlds" are more complicate than the point-based case, e.g.: before, after, during;
- In the literature, they have been studied *binary* relations between intervals, as well as *ternary* ones;
- We focus on binary relations (i.e., unary modal operators).

Brief History of the Logics of Allen's Relations

1986: Halpern and Shoham publish "A Propositional Modal Logic of Time Intervals", where ^a temporal logic interpreted over linear orders with ^a modal operator for each Allen's relation is presented, and its undecidabilityis shown;

Brief History of the Logics of Allen's Relations

- 1986: Halpern and Shoham publish "A Propositional Modal Logic of Time Intervals", where ^a temporal logic interpreted over linear orders with ^a modal operator for each Allen's relation is presented, and its undecidabilityis shown;
- 2000: Lodaya publish "Sharpening the Undecidability of Interval Temporal Logic", where the previous result is strengthened to ^a very small fragment with only twomodal operators;

Brief History of the Logics of Allen's Relations

- **1986: Halpern and Shoham publish "A Propositional** Modal Logic of Time Intervals", where ^a temporal logic interpreted over linear orders with ^a modal operator for each Allen's relation is presented, and its undecidabilityis shown;
- 2000: Lodaya publish "Sharpening the Undecidability of Interval Temporal Logic", where the previous result isstrengthened to ^a very small fragment with only twomodal operators;
- 2005,2007: Bresolin, Goranko, Montanari and Sciavicco present the first decidable fragment (PNL), generating ^a natural question about whether is it possible to establish^a complete classification of all fragments;

Brief History of the Logics of Allen's Relations (Cont'd)

● 2007: Bresolin, Goranko, Montanari and Sala present another, unrelated, decidable fragment (even if onlyover dense orders);

Brief History of the Logics of Allen's Relations (Cont'd)

- 2007: Bresolin, Goranko, Montanari and Sala present another, unrelated, decidable fragment (even if onlyover dense orders);
- 2008: Bresolin, Goranko, Montanari and Sciavicco show that most very small extensions of PNL are undecidable with ^a non-trivial reduction from the Octant Tiling Problem (publication accepted on Annals of Pureand Applied Logics);

Brief History of the Logics of Allen's Relations (Cont'd)

- 2007: Bresolin, Goranko, Montanari and Sala present another, unrelated, decidable fragment (even if onlyover dense orders);
- 2008: Bresolin, Goranko, Montanari and Sciavicco show that most very small extensions of PNL are undecidable with ^a non-trivial reduction from the Octant Tiling Problem (publication accepted on Annals of Pureand Applied Logics);
- Now: we present ^a partial classification of the over 5000different fragments, narrowing down the 'unknown' territory.

Relations and Semantics

Counting the Fragments

Allen's IA has 2^{13} different sub-algebras, each one of them has been classified by its tractability/untractability;

Counting the Fragments

- Allen's IA has 2^{13} different sub-algebras, each one of them has been classified by its tractability/untractability;
- Interval logic with unary operators has ¹² modal operators (14, if we include the non-standard $\langle D \rangle_\sqsubset$), which leads to 2^{12} (resp., $2^{14}\rangle$ fragments to be classified by its decidability/undecidability,. . .

Counting the Fragments

- Allen's IA has 2^{13} different sub-algebras, each one of them has been classified by its tractability/untractability;
- Interval logic with unary operators has ¹² modal operators (14, if we include the non-standard $\langle D \rangle_\sqsubset$), which leads to 2^{12} (resp., $2^{14}\rangle$ fragments to be classified by its decidability/undecidability,. . .
- ... but we have possibility of narrowing this number by using the inter-definability of operators, such as in thecases of $p=\,$ $\langle A \rangle \langle A \rangle p$, or $\langle D \rangle p=$ $\langle B \rangle \langle E \rangle p$.

• Depending on the properties of the underlying linear order (if it is dense, discrete, unbounded. . .), one obtainslightly different results;

- Depending on the properties of the underlying linear order (if it is dense, discrete, unbounded. . .), one obtainslightly different results;
- **In general, there are about 5000 different fragments,** where by 'different' we mean that given the fragments F and F^{\prime} , if $F\subset F^{\prime}$ (intended as sets of modalities), then F^{\prime} is strictly more expressive than $F;$

- Depending on the properties of the underlying linear order (if it is dense, discrete, unbounded. . .), one obtainslightly different results;
- **In general, there are about 5000 different fragments,** where by 'different' we mean that given the fragments F and F^{\prime} , if $F\subset F^{\prime}$ (intended as sets of modalities), then F^{\prime} is strictly more expressive than $F;$
- **Here we are particularly interested in undecidable** fragments, so we aim to consider the smallest possiblefragments;

- **•** Depending on the properties of the underlying linear order (if it is dense, discrete, unbounded. . .), one obtainslightly different results;
- **In general, there are about 5000 different fragments,** where by 'different' we mean that given the fragments F and F^{\prime} , if $F\subset F^{\prime}$ (intended as sets of modalities), then F^{\prime} is strictly more expressive than $F;$
- **Here we are particularly interested in undecidable** fragments, so we aim to consider the smallest possiblefragments;
- For the sake of simplicity, we now consider only the class of all linearly ordered sets, in the original, non-strict semantics, that is, including point-intervals.

An Overview

A possible way to look at the variety of fragments to beclassified is as follows:

Some New Undecidability Results

We showed last year that are undecidable:

$\mathsf{AABE},\;\,\mathsf{AAEB},\;\,\mathsf{AAD}^*$

where $\mathsf{D}^{*} \in \{\mathsf{D},\mathsf{D},\mathsf{D}_{\sqsubset},\mathsf{D}_{\sqsubset}\}$, and in this paper we add

AD∗ E, AD∗ E, AD∗ $^{\ast} \mathsf{O}, \;\; \mathsf{A}\mathsf{D}^{\ast}$ B, AD∗ * B, AD * $^*{\rm O}$

and

BE, BE, BE,

Some New Undecidability Results

We showed last year that are undecidable:

$\mathsf{AABE},\;\,\mathsf{AAEB},\;\,\mathsf{AAD}^*$

where $\mathsf{D}^{*} \in \{\mathsf{D},\mathsf{D},\mathsf{D}_{\sqsubset},\mathsf{D}_{\sqsubset}\}$, and in this paper we add

AD∗ E, AD∗ E, AD∗ $^{\ast} \mathsf{O}, \;\; \mathsf{A}\mathsf{D}^{\ast}$ B, AD∗ * B, AD * $^*{\rm O}$

and

BE, BE, BE,

• The first and the second group differ for the technique that has been used to achieve the result.

More recently, we actually improved many of the new \bullet results;

- More recently, we actually improved many of the new \bullet results;
- We now cover about the $75\,\%$ of all cases;

- More recently, we actually improved many of the newresults;
- We now cover about the $75\,\%$ of all cases;
- **•** There is, anyway, some interesting fragment for which we cannot even guess its decidability/undecidability, such as AB ;

- More recently, we actually improved many of the newresults;
- We now cover about the $75\,\%$ of all cases;
- There is, anyway, some interesting fragment for which we cannot even guess its decidability/undecidability, such as AB ;
- Now, we give an idea of the techniques we used.

We use a reduction from the $\mathcal{O} = \mathbb{N} \times \mathbb{N}$ -tiling problem
(Octort Tiling Problem): (Octant Tiling Problem);

- We use a reduction from the $\mathcal{O} = \mathbb{N} \times \mathbb{N}$ -tiling problem
(Octort Tiling Problem): (Octant Tiling Problem);
- **•** This is the problem of establishing whether a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$ can tile $\mathcal{O} = \{ (i, j) : i, j \in \mathbb{N} \land 0 \le i \le j \};$

- We use a reduction from the $\mathcal{O} = \mathbb{N} \times \mathbb{N}$ -tiling problem
(Octort Tiling Problem): (Octant Tiling Problem);
- **•** This is the problem of establishing whether a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$ can tile $\mathcal{O} = \{ (i, j) : i, j \in \mathbb{N} \land 0 \le i \le j \};$
- **•** This problem can be shown to be undecidable by a simple application of the König's Lemma in the same way as it was used to show the undecidability of the $\mathbb{N} \times \mathbb{N}$ tiling problem from that of $\mathbb{Z} \times \mathbb{Z}$;

- We use a reduction from the $\mathcal{O} = \mathbb{N} \times \mathbb{N}$ -tiling problem
(Octort Tiling Problem): (Octant Tiling Problem);
- **•** This is the problem of establishing whether a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$ can tile $\mathcal{O} = \{ (i, j) : i, j \in \mathbb{N} \land 0 \le i \le j \};$
- **•** This problem can be shown to be undecidable by a simple application of the König's Lemma in the same way as it was used to show the undecidability of the $\mathbb{N} \times \mathbb{N}$ tiling problem from that of $\mathbb{Z} \times \mathbb{Z}$;
- By such a reduction, we prove R.E.-hardness of the validity problem;

We consider ^a signature containing, inter alia, the ${\sf special}$ propositional letters ${\sf u},$ tile, Id, ${\sf t}_1,\ldots,{\sf t}_{\sf k},$ bb, be, eb, and corr;

- We consider ^a signature containing, inter alia, the ${\sf special}$ propositional letters ${\sf u},$ tile, Id, ${\sf t}_1,\ldots,{\sf t}_{\sf k},$ bb, be, eb, and corr;
- We set our framework by forcing the existence of a unique infinite chain of so-called *unit-intervals* (for short, u-*interval*s) on the linear order, which covers an initial segment of the model;

- We consider ^a signature containing, inter alia, the ${\sf special}$ propositional letters ${\sf u},$ tile, Id, ${\sf t}_1,\ldots,{\sf t}_{\sf k},$ bb, be, eb, and corr;
- We set our framework by forcing the existence of ^aunique infinite chain of so-called *unit-intervals* (for short, u-*interval*s) on the linear order, which covers an initial segment of the model;
- The propositional letters $t_{i,j}$ represent tiles:

$$
B_1 = \neg u \wedge \langle A \rangle u \wedge [G](u \rightarrow
$$

$$
(\neg \pi \wedge \langle A \rangle u \wedge \neg \langle D \rangle u \wedge \neg \langle D \rangle \langle A \rangle u)),
$$

$$
B_2 = [G] \bigwedge_{p \in \mathcal{AP}} ((p \vee \langle A \rangle p) \rightarrow \langle A \rangle u).
$$

- We consider ^a signature containing, inter alia, the ${\sf special}$ propositional letters ${\sf u},$ tile, Id, ${\sf t}_1,\ldots,{\sf t}_{\sf k},$ bb, be, eb, and corr;
- We set our framework by forcing the existence of ^aunique infinite chain of so-called *unit-intervals* (for short, u-*interval*s) on the linear order, which covers an initial segment of the model;
- The propositional letters $t_{i,j}$ represent tiles:

$$
B_1 = \neg u \wedge \langle A \rangle u \wedge [G](u \rightarrow
$$

$$
(\neg \pi \wedge \langle A \rangle u \wedge \neg \langle D \rangle u \wedge \neg \langle D \rangle \langle A \rangle u)),
$$

$$
B_2 = [G] \bigwedge_{p \in \mathcal{AP}} ((p \vee \langle A \rangle p) \rightarrow \langle A \rangle u).
$$

• Tiles are placed over unit intervals, there are never two different tiles over the same unit, and the special symbol * distinguishes one level from the next one:

$$
B_3 = [G](\mathbf{u} \leftrightarrow (\ast \lor \mathbf{t} \mathbf{i} \mathbf{e})) \land [G](\ast \rightarrow \neg \mathbf{t} \mathbf{i} \mathbf{e}) \land [G] \neg (\ast \land \langle A \rangle \ast),
$$

\n
$$
B_4 = [G](\mathbf{t} \mathbf{i} \mathbf{e} \leftrightarrow (\bigvee_{i=1}^k \mathbf{t}_i \land \bigwedge_{i,j=1, i \neq j}^k \neg(\mathbf{t}_i \land \mathbf{t}_j))).
$$

• Tiles are placed over unit intervals, there are never two different tiles over the same unit, and the special symbol * distinguishes one level from the next one:

$$
B_3 = [G](\mathbf{u} \leftrightarrow (\ast \vee \mathbf{t} \mathbf{i} \mathbf{e})) \wedge [G](\ast \rightarrow \neg \mathbf{t} \mathbf{i} \mathbf{e}) \wedge [G] \neg (\ast \wedge \langle A \rangle \ast),
$$

\n
$$
B_4 = [G](\mathbf{t} \mathbf{i} \mathbf{e} \leftrightarrow (\bigvee_{i=1}^k \mathbf{t}_i \wedge \bigwedge_{i,j=1, i \neq j}^k \neg(\mathbf{t}_i \wedge \mathbf{t}_j))).
$$

 \bullet Ids are collections of tiles separated by exactly one \cdot :

$$
B_5 = [G]((\mathsf{Id} \to (\neg \mathsf{u} \land \langle A \rangle \mathsf{Id} \land \neg \langle D \rangle \langle A \rangle \mathsf{Id}))) \land [G](\langle A \rangle \mathsf{Id} \leftrightarrow \langle A \rangle *), B_6 = \langle A \rangle (* \land \langle A \rangle (\mathsf{tile} \land \langle A \rangle *)),
$$

 $B_7 = B_1 \wedge B_2 \wedge B_3 \wedge B_4 \wedge B_5 \wedge B_6.$

The most difficult part is to force each Id to have the right number of tiles;

- The most difficult part is to force each Id to have the right number of tiles;
- Moreover, we have to make sure that we are able to step from a tile $t_{i,j}$ to the tile $t_{i,j+1};$

- The most difficult part is to force each Id to have the right number of tiles;
- Moreover, we have to make sure that we are able to step from a tile $t_{i,j}$ to the tile $t_{i,j+1};$
- We codify this relation by means of three propositional letters, namely bb (from the beginning point of ^a tile to the beginning point of the corresponding tile above), be, (beginning - ending), and eb (ending - beginning);

- The most difficult part is to force each Id to have the right number of tiles;
- Moreover, we have to make sure that we are able to step from a tile $t_{i,j}$ to the tile $t_{i,j+1};$
- We codify this relation by means of three propositional letters, namely bb (from the beginning point of ^a tile to the beginning point of the corresponding tile above), be, (beginning - ending), and eb (ending - beginning);
- **•** This helps us to formalize the intended properties of the "above connection" relation by means of ^a weaklanguage.

$$
B_8 = [G]((\text{bb} \vee \text{be} \vee \text{eb}) \leftrightarrow \text{corr}),
$$

\n
$$
B_9 = [G] \neg(\text{corr} \wedge \text{Id}),
$$

\n
$$
B_{10} = [G]((\text{corr} \rightarrow \neg \langle D \rangle \text{Id}) \wedge (\text{Id} \rightarrow \neg \langle D \rangle \text{corr})),
$$

\n
$$
B_{11} = [G]((\text{corr} \rightarrow \neg \langle A \rangle \text{Id}) \wedge (\langle A \rangle (\text{bb} \vee \text{be}) \rightarrow \neg \langle A \rangle \text{Id})),
$$

\n
$$
B_{13} = [G](\langle A \rangle \text{tile} \leftrightarrow \langle A \rangle \text{bb}),
$$

\n
$$
B_{14} = [A](\langle A \rangle (\text{tile} \wedge \langle A \rangle \text{tile}) \leftrightarrow \langle E \rangle \text{bb}),
$$

\n
$$
B_{15} = [G](\langle A \rangle \text{tile} \leftrightarrow \langle A \rangle \text{be}),
$$

\n
$$
B_{16} = [A]((\langle E \rangle \text{tile} \wedge \langle A \rangle \text{tile}) \leftrightarrow \langle E \rangle \text{be}),
$$

\n
$$
B_{17} = [G](\text{u} \rightarrow (\text{tile} \leftrightarrow \langle A \rangle \text{eb})),
$$

\n
$$
B_{18} = [A](\langle A \rangle (\text{tile} \wedge \langle A \rangle \text{tile}) \leftrightarrow \langle E \rangle \text{eb}),
$$

The Idea - 6 (Cont'd)

$$
B_{20} = [G] \bigwedge_{c,c' \in \{\text{bb},\text{eb},\text{be}\},c \neq c'} \neg(c \land c'),
$$

\n
$$
B_{21} = [G](\text{bb} \rightarrow \neg \langle D \rangle \text{bb} \land \neg \langle D \rangle \text{eb} \land \neg \langle D \rangle \text{be}),
$$

\n
$$
B_{22} = [G](\text{eb} \rightarrow \neg \langle D \rangle \text{bb} \land \neg \langle D \rangle \text{eb} \land \neg \langle D \rangle \text{be}),
$$

\n
$$
B_{23} = [G](\text{be} \rightarrow \langle D \rangle \text{eb} \land \neg \langle D \rangle \text{bb} \land \neg \langle D \rangle \text{be}),
$$

Now, the relation defined as bb∨be∨eb is exactly the
"shave asweever deves" relation: "above correspondence" relation;

- Now, the relation defined as bb∨be∨eb is exactly the
"shave asweever deves" relation: "above correspondence" relation;
- The "right correspondence" relation is simply the *meets* operator;

- Now, the relation defined as bb∨be∨eb is exactly the
"shave asweever deves" relation: "above correspondence" relation;
- The "right correspondence" relation is simply the *meets* operator;
- The fundamental property is the commutativity of these two relations! So, we have that

 $[G]((\text{tile} \wedge \langle A \rangle \text{tile}) \rightarrow \bigvee_{right(t_i)=left(t_j)} (\texttt{t}_i \wedge \langle A \rangle \texttt{t}_j)),$ $[G](\langle A\rangle$ tile $\rightarrow \bigvee_{up(t_i)=down(t_j)} (\langle A\rangle$ t $_{{\bf i}} \wedge \langle A\rangle$ (bb $\wedge \langle A\rangle$ t $_{{\bf j}}$))).

encode exactly the Octant Tiling Problem.

As we have seen, about 25 formulas are needed inorder to complete this encoding;

- As we have seen, about 25 formulas are needed inorder to complete this encoding;
- We were recently able to narrow the dimension of the fragment, obtaining, for example, the undecidability of AD alone;

- As we have seen, about 25 formulas are needed inorder to complete this encoding;
- We were recently able to narrow the dimension of the fragment, obtaining, for example, the undecidability of AD alone;
- **•** This requires more than 50 formulas;

- As we have seen, about 25 formulas are needed inorder to complete this encoding;
- We were recently able to narrow the dimension of the fragment, obtaining, for example, the undecidability of AD alone;
- **•** This requires more than 50 formulas;
- **Besides the results in themselves, we find this** interesting as an expressivity exercise, which turns out to be useful when we apply interval logics to practical tasks.

More Considerations (Cont'd)

Exactly as in the field of Interval Algebra it has been done ^a great effort to complete the classification of all fragments, our long-term objective is to complete theclassification of fragments of Interval Logics;

More Considerations (Cont'd)

- Exactly as in the field of Interval Algebra it has been done ^a great effort to complete the classification of all fragments, our long-term objective is to complete theclassification of fragments of Interval Logics;
- Possibly, the main side-product of this classification will be the identification of more expressive decidablefragments, finally closing ^a 20-years-old open question;

More Considerations (Cont'd)

- Exactly as in the field of Interval Algebra it has been done ^a great effort to complete the classification of all fragments, our long-term objective is to complete theclassification of fragments of Interval Logics;
- Possibly, the main side-product of this classification will be the identification of more expressive decidablefragments, finally closing ^a 20-years-old open question;
- It is also worth noticing that the decidable fragments that have been found so far not only were not expected, but also the techniques used to show decidability aretechnically interesting.

