Recurrent Reachability in Regular Model Checking

Anthony Widjaja To and Leonid Libkin

LFCS, School of Informatics, University of Edinburgh

LPAR ²⁰⁰⁸

LPAR $2008 - 1 / 26$

Overview

■

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Verification of infinite-state systems

Some sources of infinity:

- ◆unbounded stacks or FIFO queues
- ◆unbounded integer variable or real variable
- ◆unbounded number of finite processes
- Infinite systems need finite representations
- ■ Regular model checking: use word/tree automata as finite representations

Outline

■

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Background and Motivation

- ◆The model: word/tree automatic transition systems
- ◆Verification questions
- ◆Survey of known results
- Our contributions
	- ◆Recurrent reachability
	- ◆Model checking for CTL-like logic
- ■Future work

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Background and motivation

LPAR 2008 - 4 $/$ 26

Automatic transition systems

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Two flavors:

■

◆word-automatic

◆tree-automatic

Main ideas:

◆ \blacklozenge Domains are Σ^* or $\text{TREE}(\Sigma)$

◆Automata interpret atomic propositions

◆Regular transducers interpret transition relations

LPAR $2008 - 5 / 26$

Regular transducers

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

 \blacksquare Example: $(aaabab, bab)$

LPAR 2008 - $6 / 26$

Regular transducers

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

■

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Example: (aaabab, bab)

Can be thought of as

 $\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} b \\ \perp \end{bmatrix} \begin{bmatrix} a \\ \perp \end{bmatrix} \begin{bmatrix} a \\ \perp \end{bmatrix} \begin{bmatrix} b \\ \perp \end{bmatrix}$

LPAR $2008 - 6 / 26$

Regular transducers

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

■

[Future](#page-35-0) work

Example: (aaabab, bab)

Can be thought of as

 $\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ a \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} b \\ \perp \end{bmatrix} \begin{bmatrix} a \\ \perp \end{bmatrix} \begin{bmatrix} a \\ \perp \end{bmatrix} \begin{bmatrix} b \\ \perp \end{bmatrix}$

■■ word over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} := \Sigma \cup \{\perp\}$

■■ Automaton over $\Sigma_\perp \times \Sigma_\perp$ defines a regular binary relation over Σ^*

LPAR 2008 $-6 / 26$

^A concrete example: infinite binary tree

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

LPAR $2008 - 7 / 26$

Infinite binary tree (cont)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

 $\mathfrak{T}=$ $= \langle \{0, 1\}^*$ $^{*};<,L_{0},L_{1}\rangle$: ; \blacksquare $<$ $=$ $\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)$ $\frac{0}{0}$ + $\big]$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ $\overline{}$ · \cdot $\Big(\Big[\begin{array}{c} \bot \\ 0 \end{array}\Big]$ $\frac{1}{0}$ + $\overline{}$ $\begin{bmatrix} \frac{1}{1} \end{bmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\overline{}$

 \blacksquare $_0 = (0 + 1)^*$ *0

 \blacksquare $_1 = (0+1)^*$ $^{\ast}1$

Note: $<^*$ is also a regular relation.

LPAR $2008 - 8 / 26$

■

Regular tree transducers

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

LPAR ²⁰⁰⁸ – ⁹ / ²⁶

■

Regular tree transducers

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Example:

 \blacksquare $(T, T'$) can be thought of as

LPAR $2008 - 9 / 26$

Other examples

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Word-automatic

■

Pushdown systems

Prefix-recognizable systems

Lossy channel systems

Parameterized systems

Tree-automatic

- ■PA-processes (minus commutativity)
- ■Ground tree rewrite systems

LPAR ²⁰⁰⁸ – ¹⁰ / ²⁶

Verification questions

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

■

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Reachability (safety):

```
{\sf Input:}\quad two states s_1,s_2Task: decide whether s_1 \rightarrow^* s_2
```
Recurrent reachability (liveness):

```
\mathsf{Input:} \quad \mathsf{state}\; s, \; \mathsf{and} \; \mathsf{a}\; \mathsf{set}\; S\; \mathsf{of}\; \mathsf{states} \ \mathsf{d} \mathsf{in} \; \mathsfTask: \; decide whether s can visit S infinitely often
```


Some known results

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Theorem (Folklore): The transitive closure \rightarrow^+ of a regular relation \rightarrow is not necessarily regular.

LPAR ²⁰⁰⁸ – ¹² / ²⁶

Some known results

■

[Future](#page-35-0) work

Theorem (Folklore): The transitive closure \rightarrow^+ of a regular relation \rightarrow is not necessarily regular.

In practice, \rightarrow^+ for automatic systems are often regular. Some good semi-algorithms for computing \rightarrow^+ have been developed.

Some known results

[Overview](#page-1-0) [Outline](#page-2-0)[Background](#page-3-0) andmotivationThe [model](#page-4-0)

■

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Theorem (Folklore): The transitive closure \rightarrow^+ of a regular relation \rightarrow is not necessarily regular.

In practice, \rightarrow^+ for automatic systems are often regular. Some good semi-algorithms for computing \rightarrow^+ have been developed.

■Definition: If \rightarrow^+ is regular, a transducer for \rightarrow^+ is called an iterating transducer.

Some known results (cont)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

 \blacksquare Theorem: \rightarrow^+ is regular and PTIME-computable for:

- ◆ Pushdown systems (Caucal) ◆GTRSs (Dauchet et al.)
- ◆PA-processes (Lugiez & Schnoebelen)

■ \blacksquare Theorem: \rightarrow^+ is regular and EXPTIME-computable for prefix-rec. systems

Some known results (cont.)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) and

motivation

 The [model](#page-4-0) Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

What about recurrent reachability?

LPAR ²⁰⁰⁸ – ¹⁴ / ²⁶

Some known results (cont.)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) and

motivation

The [model](#page-4-0)

Verif. [question](#page-13-0)

Lit. [survey](#page-14-0)

Our [contribution](#page-20-0)

[Future](#page-35-0) work

What about recurrent reachability?

Partial answers:

- PTIME-computable for *pushdown systems* (Esparza et al.) and $GTRS$ s $(\mathsf{Löding})$;
- EXPTIME-computable for *prefix-rec.* systems (follows from Löding's).
- Undecidable for lossy channel systems (Abdulla &Jonsson)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach. Model [Checking](#page-33-0)

[Future](#page-35-0) work

Our contribution

LPAR ²⁰⁰⁸ – ¹⁵ / ²⁶

Recurrent reachability

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

■

[Future](#page-35-0) work

Restriction: In the following, we ONLYconsider automatic transition systems:

whose transitive closures are regular iterating transducers available as input

LPAR ²⁰⁰⁸ – ¹⁶ / ²⁶

Recurrent reachability (cont)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

■

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

Theorem: Over automatic systems:

- recurrent reachability is decidable in PTIME in the size of systems $+$ iterating transducers;
- Buchi word/tree automata that recognize infinite witnessing paths are PTIME-computable.

Recurrent reachability (cont)

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

■

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

Theorem: Over automatic systems:

- recurrent reachability is decidable in PTIME in the size of systems $+$ iterating transducers;
- Buchi word/tree automata that recognize infinite witnessing paths are PTIME-computable.

Corollary: Recurrent reachability is decidable in PTIME forpushdown systems, GTRSs, and PA-processes and isdecidable in EXPTIME for prefix-rec. systems.

LPAR ²⁰⁰⁸ – ¹⁷ / ²⁶

[Overview](#page-1-0) [Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach. Model [Checking](#page-33-0)

[Future](#page-35-0) work

Proof Idea for word case: Inputs are:

■**a** an NFA $\mathcal A$

u transducers \rightarrow and \rightarrow ⁺ ■

■**n** and a word w

LPAR ²⁰⁰⁸ – ¹⁸ / ²⁶

 [Outline](#page-2-0)[Background](#page-3-0) and

[Overview](#page-1-0)

motivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach. Model [Checking](#page-33-0)

[Future](#page-35-0) work

Proof Idea for word case: Inputs are:

- **a** an NFA $\mathcal A$
- **u** transducers \rightarrow and \rightarrow ⁺ ■
- **n** and a word w

Notation: $Rec(\mathcal{A})$ denotes the set of all words s_0 infinite path $s_0 \to s_1 \to \dots$ visiting $L(\mathcal{A})$ infinitely often. $_0$ with an

Approach: show that $Rec(\mathcal{A})$ is regular for which an automaton is constructible in PTIME

LPAR ²⁰⁰⁸ – ¹⁸ / ²⁶

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

■ $s_0 \in Rec(\mathcal{A})$ iff there is an infinite witnessing sequence

■ \blacksquare Divide $Rec(\mathcal{A})$ into two sets Rec_1 $_1$ and Rec_2 :

- ◆ $w \in Rec$ i.e., $s_i=s_j$ for some distinct i, j . 1 $_{1}$ has a looping witnessing infinite sequence,
- $\blacklozenge \quad w \in Rec_2$ sequence, i.e., $s_i\neq s_j$ for all distinct $i,j.$ 2 $_{\rm 2}$ has a non-looping witnessing infinite

■

■

[Future](#page-35-0) work

 \blacksquare An NFA for Rec 1 $_1$ can easily be constructed in PTIME (Hint: simple product construction and projection)

 \blacksquare How do we construct an NFA for Rec $\overline{2}$?

LPAR ²⁰⁰⁸ – ²⁰ / ²⁶

[Overview](#page-1-0) [Outline](#page-2-0)[Background](#page-3-0) andmotivationOur [contribution](#page-20-0)[Recur.](#page-21-0) reach. Model [Checking](#page-33-0)

■

[Future](#page-35-0) work

- \blacksquare An NFA for Rec 1 $_1$ can easily be constructed in PTIME (Hint: simple product construction and projection)
- \blacksquare How do we construct an NFA for Rec $\overline{2}$?
- ■■ Claim: $w \in Rec$ sequence.2 $_{\rm 2}$ iff there exists a "nice" witnessing
- From this characterization, it will be easy to construct an NFA for $Rec_2.$

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

 Lengths of words in ^a non-looping witnessing infinite sequence grow indefinitely.

moreover, we can extract subsequence of the form

LPAR ²⁰⁰⁸ – ²¹ / ²⁶

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

LPAR ²⁰⁰⁸ – ²² / ²⁶

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

■ Construct Büchi automaton $\mathcal B$ that recognizes ω -words of the form

$$
\begin{bmatrix} \alpha_0 \\ \beta_0 \end{bmatrix} \# \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix} \# \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} \# \dots
$$

satisfying aforementioned conditions

■ \blacksquare Construct \mathcal{A}_2 analysis in $\mathcal B$ $_{\rm 2}$ by taking projection and do reachability

Model Checking CTL-like logic

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

Consider EF-logic with syntax:

 φ,φ ′ $\mathcal{U} := \top \mid P_i, i \leq n \mid \varphi \vee \varphi$ $'$ | $\neg\varphi$ | EX φ | EF φ

Simplest meaningful branching-time logic

 \blacksquare Extend with formulas $\mathsf{EGF}\varphi$ interpreted as $\llbracket \mathsf{EGF}\varphi \rrbracket := Rec([\![\varphi]\!]).$

Model Checking CTL-like logic

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

Our [contribution](#page-20-0)

[Recur.](#page-21-0) reach.

Model [Checking](#page-33-0)

[Future](#page-35-0) work

Consider EF-logic with syntax:

 φ,φ ′ $\mathcal{U} := \top \mid P_i, i \leq n \mid \varphi \vee \varphi$ $'$ | $\neg\varphi$ | EX φ | EF φ

Simplest meaningful branching-time logic

- \blacksquare Extend with formulas $\mathsf{EGF}\varphi$ interpreted as $\llbracket \mathsf{EGF}\varphi \rrbracket := Rec([\![\varphi]\!]).$
- Corollary: Model checking (EF + EGF)-logic over automatic transition systems is decidable.

LPAR ²⁰⁰⁸ – ²⁴ / ²⁶

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

Our [contribution](#page-20-0)

[Future](#page-35-0) work

Future work

LPAR ²⁰⁰⁸ – ²⁵ / ²⁶

Plan for third year

[Overview](#page-1-0)

[Outline](#page-2-0)

[Background](#page-3-0) andmotivation

■

■

Our [contribution](#page-20-0)

[Future](#page-35-0) work

More examples that fit our restriction

Some implementations

■**Complexity of model-checking** $(EF + EGF)$ **-logic over** automatic transition systems

LPAR ²⁰⁰⁸ – ²⁶ / ²⁶