Recurrent Reachability in Regular Model Checking

Anthony Widjaja To and Leonid Libkin

LFCS, School of Informatics, University of Edinburgh

LPAR 2008

LPAR 2008 - 1 / 26

Overview

Overview

Outline

Background and motivation

Our contribution

Future work

Verification of infinite-state systems

Some sources of infinity:

unbounded stacks or FIFO queues

- unbounded integer variable or real variable
- unbounded number of finite processes

Infinite systems need finite representations

Regular model checking: use word/tree automata as finite representations

Outline

Overview

Outline

Background and motivation

Our contribution

Future work

Background and Motivation

- The model: word/tree automatic transition systems
- Verification questions
- Survey of known results
- Our contributions
 - Recurrent reachability
 - Model checking for CTL-like logic
- Future work

Overview Outline

Background and motivation

The model

Verif. question

Lit. survey

Our contribution

Future work

Background and motivation

Automatic transition systems

Overview Outline

Background and motivation

The model

Verif. question Lit. survey

Our contribution

Future work

Two flavors:

word-automatic

tree-automatic

Main ideas:

• Domains are Σ^* or $\text{TREE}(\Sigma)$

Automata interpret atomic propositions

Regular transducers interpret transition relations

LPAR 2008 - 5 / 26

Regular transducers

Overview

Outline

Background and motivation

The model

 ${\sf Verif.} \ {\sf question}$

Lit. survey

Our contribution

Future work

Example: (*aaabab*, *bab*)

LPAR 2008 - 6 / 26

Regular transducers

Overview

Outline

Background and motivation

The model

Verif. question

Lit. survey

Our contribution

Future work

Example: (aaabab, bab)

Can be thought of as

 $\left[\begin{array}{c}a\\b\end{array}\right]\left[\begin{array}{c}a\\a\end{array}\right]\left[\begin{array}{c}a\\b\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}a\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]$

LPAR 2008 - 6 / 26

Regular transducers

Overview

Outline

Background and motivation

The model

Verif. question

Lit. survey

Our contribution

Future work

Example: (aaabab, bab)

Can be thought of as

 $\left[\begin{array}{c}a\\b\end{array}\right]\left[\begin{array}{c}a\\a\end{array}\right]\left[\begin{array}{c}a\\b\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]\left[\begin{array}{c}b\\\bot\end{array}\right]$

word over $\Sigma_{\perp} \times \Sigma_{\perp}$, where $\Sigma_{\perp} := \Sigma \cup \{\perp\}$

Automaton over $\Sigma_{\perp} \times \Sigma_{\perp}$ defines a regular binary relation over Σ^*

LPAR 2008 - 6 / 26

A concrete example: infinite binary tree

Overview Outline

Background and motivation

The model

Verif. question

Lit. survey

Our contribution

Future work

LPAR 2008 - 7 / 26

Infinite binary tree (cont)

Overview Outline

Background and motivation

The model

Verif. question Lit. survey

Our contribution

Future work

 $\mathfrak{T} = \langle \{0, 1\}^*; <, L_0, L_1 \rangle$: $= \left(\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right] + \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \right)^* \cdot \left(\left[\begin{smallmatrix} \bot \\ 0 \end{smallmatrix} \right] + \left[\begin{smallmatrix} \bot \\ 1 \end{smallmatrix} \right] \right)$

 $\square \quad L_0 = (0+1)^* 0$

 $\square \quad L_1 = (0+1)^* 1$

Note: $<^*$ is also a regular relation.

LPAR 2008 - 8 / 26

Regular tree transducers

Example:

Overview

Outline

Background and motivation

The model

Verif. question

Lit. survey

Our contribution

Future work

LPAR 2008 - 9 / 26

Regular tree transducers

Overview

Outline

Background and motivation

The model

Verif. question Lit. survey

5

Our contribution

Future work

 $\begin{tabular}{ll} \hline (T,T') \mbox{ can be thought of as } \\ \end{tabular}$

LPAR 2008 - 9 / 26

Other examples

Overview Outline Background and

motivation

The model

Verif. question Lit. survey

Our contribution

Future work

Word-automatic

Pushdown systems

Prefix-recognizable systems

Lossy channel systems

Parameterized systems

Tree-automatic

- PA-processes (minus commutativity)
- Ground tree rewrite systems

LPAR 2008 - 10 / 26

Verification questions

Overview Outline

Background and

motivation

The model

Verif. question

Lit. survey

Our contribution

Future work

```
Reachability (safety):
```

```
Input: two states s_1, s_2
Task: decide whether s_1 \rightarrow^* s_2
```

Recurrent reachability (liveness): Input: state s, and a set S of states

Task: decide whether s can visit S infinitely often

Some known results

Overview

Outline

Background and

motivation

The model

 $Verif. \ question$

Lit. survey

Our contribution

Future work

Theorem (Folklore): The transitive closure \rightarrow^+ of a regular relation \rightarrow is not necessarily regular.

LPAR 2008 - 12 / 26

Some known results

Overview				
Outline				
Background and				
motivation				
The model				
Verif. question				

Lit. survey

Our contribution

Future work

Theorem (Folklore): The transitive closure \rightarrow^+ of a regular relation \rightarrow is not necessarily regular.

In practice, \rightarrow^+ for automatic systems are often regular. Some good semi-algorithms for computing \rightarrow^+ have been developed.

LPAR 2008 - 12 / 26

Some known results

Overview Outline Background and motivation

The model

 $Verif. \ question$

Lit. survey

Our contribution

Future work

- Theorem (Folklore): The transitive closure \rightarrow^+ of a regular relation \rightarrow is not necessarily regular.
- In practice, \rightarrow^+ for automatic systems are often regular. Some good semi-algorithms for computing \rightarrow^+ have been developed.
- Definition: If \rightarrow^+ is regular, a transducer for \rightarrow^+ is called an iterating transducer.

Some known results (cont)

Overview

Outline

- Background and motivation
- The model
- Verif. question

Lit. survey

Our contribution

Future work

Theorem: \rightarrow^+ is regular and PTIME-computable for:

- Pushdown systems (Caucal)
 CTPSs (Daushet at al.)
- GTRSs (Dauchet et al.)
 DA processos (Lugioz & Sebre
- PA-processes (Lugiez & Schnoebelen)

Theorem: \rightarrow^+ is regular and EXPTIME-computable for prefix-rec. systems

Some known results (cont.)

Overview

Outline

Background and

motivation

The model

 $Verif. \ question$

Lit. survey

Our contribution

Future work

What about recurrent reachability?

LPAR 2008 - 14 / 26

Some known results (cont.)

Overview

Outline

Background and

motivation

The model

Lit. survey

Our contribution

Future work

What about recurrent reachability?

Partial answers:

- PTIME-computable for *pushdown systems* (Esparza et al.) and *GTRSs* (Löding);
- EXPTIME-computable for *prefix-rec. systems* (follows from Löding's).
- Undecidable for lossy channel systems (Abdulla & Jonsson)

Overview Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Our contribution

LPAR 2008 - 15 / 26

Recurrent reachability

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Restriction: In the following, we ONLY consider automatic transition systems:

whose transitive closures are *regular* iterating transducers available as input

LPAR 2008 - 16 / 26

Recurrent reachability (cont)

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Theorem: Over automatic systems:

- recurrent reachability is decidable in PTIME in the size of systems + iterating transducers;
- Buchi word/tree automata that recognize infinite witnessing paths are PTIME-computable.

Recurrent reachability (cont)

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Theorem: Over automatic systems:

- recurrent reachability is decidable in PTIME in the size of systems + iterating transducers;
- Buchi word/tree automata that recognize infinite witnessing paths are PTIME-computable.

Corollary: Recurrent reachability is decidable in PTIME for pushdown systems, GTRSs, and PA-processes and is decidable in EXPTIME for prefix-rec. systems.

LPAR 2008 - 17 / 26

Overview Outline Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Proof Idea for word case: Inputs are:

 \blacksquare an NFA \mathcal{A}

• transducers \rightarrow and \rightarrow^+

 \blacksquare and a word w

Overview Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Proof Idea for word case: Inputs are:

- an NFA \mathcal{A} transducers \rightarrow and \rightarrow^+
 - and a word w

Notation: $Rec(\mathcal{A})$ denotes the set of all words s_0 with an infinite path $s_0 \rightarrow s_1 \rightarrow \ldots$ visiting $L(\mathcal{A})$ infinitely often.

Approach: show that Rec(A) is regular for which an automaton is constructible in PTIME

LPAR 2008 - 18 / 26

Overview Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

 $s_0 \in Rec(\mathcal{A})$ iff there is an infinite witnessing sequence

$$s_0 \to^+ \quad s_1 \to^+ \quad s_2 \to^+ \dots$$

$$\pitchfork \qquad \pitchfork \qquad \dots$$

$$L(\mathcal{A}) \qquad L(\mathcal{A}) \qquad \dots$$

Divide $Rec(\mathcal{A})$ into two sets Rec_1 and Rec_2 :

- w ∈ Rec₁ has a looping witnessing infinite sequence,
 i.e., s_i = s_j for some distinct i, j.
- → $w \in Rec_2$ has a non-looping witnessing infinite sequence, i.e., $s_i \neq s_j$ for all distinct i, j.

Recurrent reachability (proof)

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

An NFA for Rec_1 can easily be constructed in PTIME (Hint: simple product construction and projection)

How do we construct an NFA for Rec_2 ?

LPAR 2008 - 20 / 26

Outline Background and motivation

Overview

Our contribution

Recur. reach.

Model Checking

Future work

- An NFA for Rec_1 can easily be constructed in PTIME (Hint: simple product construction and projection)
- How do we construct an NFA for Rec_2 ?
- Claim: $w \in Rec_2$ iff there exists a "nice" witnessing sequence.
- From this characterization, it will be easy to construct an NFA for Rec_2 .

Recurrent reachability (proof)

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Lengths of words in a non-looping witnessing infinite sequence grow indefinitely.

moreover, we can extract subsequence of the form

s_0	E	${\mathcal E}$	ε	
β_0	α_1	${\mathcal E}$	${\mathcal E}$	• • •
β_0	β_1	α_2	${\mathcal E}$	• • •
β_0	β_1	β_2	$lpha_3$	ε
:	:	-	β_3	÷.,
			÷	

LPAR 2008 - 21 / 26

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

LPAR 2008 - 22 / 26

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

LPAR 2008 - 22 / 26

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Construct Büchi automaton $\mathcal B$ that recognizes ω -words of the form

$$\begin{bmatrix} \alpha_0 \\ \beta_0 \end{bmatrix} \# \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix} \# \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} \# \cdots$$

satisfying aforementioned conditions

Construct \mathcal{A}_2 by taking projection and do reachability analysis in \mathcal{B}

Model Checking CTL-like logic

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Consider **EF**-logic with syntax:

 $\varphi, \varphi' := \top \mid P_i, \ i \leq n \mid \varphi \lor \varphi' \mid \neg \varphi \mid \mathsf{EX}\varphi \mid \mathsf{EF}\varphi$

Simplest meaningful branching-time logic

Extend with formulas $\mathbf{EGF}\varphi$ interpreted as $\llbracket \mathbf{EGF}\varphi \rrbracket := Rec(\llbracket \varphi \rrbracket).$

Model Checking CTL-like logic

Overview

Outline

Background and motivation

Our contribution

Recur. reach.

Model Checking

Future work

Consider **EF**-logic with syntax:

 $\varphi, \varphi' := \top \mid P_i, \ i \le n \mid \varphi \lor \varphi' \mid \neg \varphi \mid \mathsf{EX}\varphi \mid \mathsf{EF}\varphi$

Simplest meaningful branching-time logic

- Extend with formulas $\mathbf{EGF}\varphi$ interpreted as $\llbracket \mathbf{EGF}\varphi \rrbracket := Rec(\llbracket \varphi \rrbracket).$
- Corollary: Model checking (EF + EGF)-logic over automatic transition systems is decidable.

LPAR 2008 - 24 / 26

Overview

Outline

Background and motivation

Our contribution

Future work

Future work

LPAR 2008 - 25 / 26

Plan for third year

Overview

Outline

Background and motivation

Our contribution

Future work

More examples that fit our restriction

Some implementations

Complexity of model-checking (EF + EGF)-logic over automatic transition systems

LPAR 2008 - 26 / 26