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Abstract

This paper presents a quantificational logic for protocols based
on a spatial logic of Caires and Cardelli called “A spatial logic
for concurrency: Parts I & II”. The presentation is through
a Gentzen system which implements a labeled deductive sys-
tem. The labels are processes as specified via the m—calculus.
The logic can be seen as combination of classical logic, linear
logic, and modal logic in that it inherits some of the connec-
tives of each.



Gentzen Sequents

The formal logic has a Gentzen formulation where sequents are of
the form
Algebraic Formulae

Logic Formulae
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What is fixed? Ans: Nothing, really, but we will fixate on the 7—
calculus for the algebraic theory, logic analogues of m—calculus for-
mulae, and classical logic for the Predicates. Hence, the formal logic
contains classical logic and some other connectives inspired by the
m—calculus. The extra connectives appear in other non-standard log-
ics.



Local State vs. Global State

Definition 1 A state is a region from either the beginning of
the protocol or anything including the last message reception up
to the next receipt. In hack notation, this appears as

A Role
stateq stateq statey, 1 statep,

Let each protocol role be segregated into states.



m—Calculus vs. Logical Machinery

m—Calculus Notions | Logical Notions

Parallel | operator Intensional, symmetric conjunction o
Sequential - operator Intensional, non—symmetric conjunction -
Send formulae Send formulae
Receive formulae Send formulae, entailment —o and

local modal quantifiers
Reduction of terms Proof structure

Predicates

Quantifiers

Boolean connectives

Encoding reception:
z(y) - AL Vy.x(y) — OA.
from Caires and Cardelli is replaced with
(y)- A= Yy.(y) — A

Definition 2 A sequential formula is any formula of the logic
not containing the o connective.

Note: We are not using the whole m-calculus as Caires and Cardelli
do, but hope to eventually.



Propositional Boolean
' Functions Algebra
Domain
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To induce a Boolean algebra structure on the Propositional Func-
tions, define

U
~

(p A q)(x) = plz) Aqglz)
(pVq)(z) = plx)Vq(x)

def
(=p)(z) = —p(z)
A quantifier, say, V, is an operator on the function space:

U
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YV : Prop. Fens — Constant Prop. Fens.

meeting certain axioms. Consequently, V looks like a modal operator
on a Boolean algebra of propositional functions.

Kripke Frames for Quantifiers: (W, K1,..., K,) where W is
a collection of interpretations and the K;’s are equivalence relations
on the interpretations.

Kripke Frames for Local Modal Quantifiers: (W, Yy,...,Y,)
where W is a collection of worlds and the Y;’s are binary relations
on the worlds used to interpret local modal quantifiers Yi, Yo, etc.



Sequencing Conjunction Rules:

[A is a sequential formulal
(Su=X -X) T,X:AX : BFA
s

(S) T,u:A-BFA

|A is a sequential formulal

<S> Fl - A, Al

<S> le_t:B,AQ Uigv't
-

<S> Fl,FQl_u:A'B,Al,AQ

Parallel Conjunction Rules:

(S;u=X[X]|Y[]) TIX: AY:BkFA

o
(S) T u:X[A]oY[B]F A
<S> Fll_SIA,Al
(SYy Tokt:B,Ay  u=gX[v||Y[t]
o

<S> Fl, [y Fu: X[A] o Y[B],Al,AQ



Modal Quantifier Rules:

Yy—x

(SSsu— X) INX: Ay —a}FA

Y+
(S) Thu:Yy.AEA

(S) Thv: A{y — 2} v
=Y

(S) TFu:Yy.A

Entailment Rules:

[A is a sequential formulal

<S> Fl -t A,Al

(S,t\uo—>X> FQ,XIBFAQ

—o |-

<S> Fl,FQ,UIA—OBl_Al,AQ

(X is not free in the conclusion]
Sy X AFv:B,A  X|uo—wv
- o

() 'kFu:A— B,A
One should be able to prove that

X[(a) - ()] o Yl(y) - ({b) - P(y, b))] = YyXz.P(y,z).



Let U=u:YyXz.P(a,x)

y—a 5

(u= XX 2] | YL,V 55 V1L, X | Vo= Do) Ao (2),Ye: (o) - Pa,b) U
(u=XI[X;- X [ YDA]) Ay:(a) A5 (a)
—o |-

@Tﬁ— A A

(u= X5 - Xo] [ Y1, 00 =— 1) &G (@), Xo : (), V12 (@) —o ((b) - Pla, b)) = U
Y F

(u= X5 Xo] | Y[]) A5 (), Az : (2), V12 Yy.(y) — ((b) - Ply,b)) U
¥

(u=X[4] [ YD) X (a) - (2), 01 Yy(y) — ((b) - Py,b)) FU

def. of (y)

(u=XX] [ YD) A1 {a) - (), I1: (y) - ((b) - Py, b)) = U
ol

() w:X[a) - (z)] o Y[(y) - ((b) - Py, b)) U



(S, = X[A] | Y[V | 0], & “3 X, Xy | V3o 0) 0:2,0: Pla,b) - U
(S, u" = X[] [ Y[Vs | 0])  Vs:(b) F Vs (b)

—o |-
(S0 = X[2) | Y[Vs- 0], X Z52) Xy (b) —t, Vs : (b),0: P(a,b) - U
X
(S,u' =X[A] | Y[Vs5:0]) Xy Xax)—t,V3:(b),0: Pla,b) U
F
(S,u' = X[X] | YDA Ao :Xa.(x) —t,YVs:(b) - Pla,b)-U
def. of (x)

(5, u" = X[X] | YDR)) A : (2),d%:(b) - Pa,b) FU
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y<—a

u=X[X- 2] | Y[ WS Xy | Yio— 0] W

u= X[ ] | YV s X[A - Xo] | Y] &S X [ Voo Ko | D

uT— g X[X] | Y[)2
Similarly, noting that Y5 | 0 = Y,

Xg‘ngO‘O
Vo=V3-0

u = X[ | Y[ XQBS’-)&Q X, | Voo—=01]0-0
010-0=0]0

W= XA | YR E e X[ | Y[V A | Dee— 0] 0

b

w286 x[0] | Y[0] = 0

11



Future Directions:

A Better User Interface:

1 Oy T Hyp
of Astep .. L reason
s Another step . . . . . . . . . . L. reason
4 (Ss) Hyp
5| A subproof step . . . . . . . . ... reason
¢ An outer proof step . . . . . . . . . . .. reason
71 (S9)An inner black box, . . . . . . . ...

s| new rules apply in here

ol Astep . . . . reason
0 (S) A reason
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Possible Worlds Semantics = Strand Semantics?:

The role
Y((y1) - (@1) - (z2) - (w3) - (y2) - (z4) - (25) - (y3)]

has as its semantics all paths through Y below (from left to right):

where all universes between two consecutive @’s are clusters of worlds
for evaluating FO formulae.

Two roles run in parallel have links between the send and receives
that pair up. In short, we have the strand semantics where the nodes
are FO world clusters.
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Domain Information:

The logic so far is sterile in that it can only tell you how to break
apart a protocol. You cannot prove much until domain specific ax-
ioms about protocols are added.

Proof Transformations:

e Protocols can be built from smaller protocols using protocol trans-
forms.

e Proofs should get transformed inductively according to the spec-
ification of the protocol transform.
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