Abstractions for the Formal Analysis of Optimistic Exchange Protocols [Work in Progress]

A. Boisseau¹, S. Kremer² and J.-F. Raskin²

¹Laboratoire Spécification et Vérification (LSV), CNRS & ENS de Cachan, France ²Université Libre de Bruxelles, Department of Computer Science, Belgium

What are fair exchange protocols ?

- electronic purchase of goods: exchange of an electronic item against an electronic payment
- digital contract signing: exchange of digital signatures on a given electronic document
- non-repudiation protocols: exchange of an electronic item and a nro evidence against the corresponding nrr evidence
- certified e-mail: exchange of an electronic message against a proof of receipt

• • • •

Contract Signing Protocols

(1)
$$A \rightarrow B$$
 : $SIG_A(C)$
(2) $B \rightarrow A$: $SIG_B(C)$

Contract Signing Protocols

(1)
$$A \rightarrow B$$
 : $SIG_A(C)$
(2) $B \rightarrow A$: $SIG_B(C)$

Asymmetry implies advantages of B over A:

- *B* can stop the protocol
- *B* can influence an external observer by showing *A*'s signature

Contract Signing Protocols

(1)
$$A \rightarrow B$$
 : $SIG_A(C)$
(2) $B \rightarrow A$: $SIG_B(C)$

Asymmetry implies advantages of *B* over *A*:

- *B* can stop the protocol
- B can influence an external observer by showing A's signature

Solution [S. Even, Y. Yacobi – Relations among Public Key Signature Systems]:

- Probabilistic Gradual exchange
- Trusted Third Party (in particular: optimistic protocols)

GJM Protocol

[J. A. Garay, M. Jakobsson, P. Mac Kenzie – Abuse-Free Optimistic Contract Signing]

Exchange:
1)
$$A \rightarrow B : PCS_{A,B,T}(C)$$

2) $B \rightarrow A : PCS_{B,A,T}(C)$
3) $A \rightarrow B : SIG_A(C)$
4) $B \rightarrow A : SIG_B(C)$

Resolve(A):
1)
$$A \to T : \langle PCS_{B,A,T}(C), SIG_A(C) \rangle$$

2) $T \to A : \begin{cases} SIG_T(abort) \text{ if aborted} \\ SIG_B(C) \text{ otherwise} \end{cases}$

Abort : 1) $A \to T$: $SIG_A(abort)$ 2) $T \to A$: $\begin{cases} SIG_B(C) \text{ if resolved} \\ SIG_T(abort) \text{ otherwise} \end{cases}$ Resolve(B): 1) $A \to T : \langle PCS_{B,A,T}(C), SIG_A(C) \rangle$ 2) $T \to A : \begin{cases} SIG_T(abort) \text{ if aborted} \\ SIG_B(C) \text{ otherwise} \end{cases}$

Specific to fair exchange protocols

- Branching protocols vs Ping-Pong protocols
- Competition between participants
 vs Competition between participants and intruder
- Fairness, Timeliness and Abuse-freeness vs Secret and Authentication

Expected Properties

- Fairness: "it is impossible for a participant to obtain a valid contract without allowing the remaining participant to do the same"
- Timeliness: "at any moment in the protocol, each participant can reach a point where it can stop the protocol, achieving fairness"
- Abuse-Freeness: "it is impossible for a participant, to be able to prove to an external observer that he has the power to determine the outcome of the protocol"

Related Work

- [V. Shmatikov, J. C. Mitchell Finite State Analysis of Two Contract Signing Protocols] Modeling with transition systems Verification with $Mur\varphi$
- [R. Chada, M.Kanovich, A. Scedrov Inductive Methods and Contract-Signing Protocols]
 Modeling with MSR Inductive proofs
- [S. Kremer, J.-F. Raskin Game Analysis of Abuse-Free Contract Signing]
 Game modeling with ATS and ATL
 Verification with MOCHA

Our Approach

- Game based modeling (based on [S. Kremer, J.-F. Raskin – Game Analysis of Abuse-Free Contract Signing])
- one protocol session, but TTP responding to any (valid) request
- Replace simplifications by abstractions
- Automation
 - "high-level" specification
 - \blacktriangleright abstract \rightarrow finite reactive modules
 - ► model-check using MOCHA

Protocol Syntax: Roles (common participants)

 $\operatorname{recv}(a_1^t)$ $[\neg \operatorname{send}(r_2^t)\operatorname{to}(A) \land \neg \operatorname{send}(r_2^t)\operatorname{to}(B)]?{\operatorname{send}(a_2^t)\operatorname{to}(A) : \operatorname{send}(r_2^t)\operatorname{to}(A)}$ $\operatorname{recv}(r_1^t)$ $[\neg \operatorname{send}(a_2^t)\operatorname{to}(A)]?{\operatorname{send}(r_2^t)\operatorname{to}(A):\operatorname{send}(a_2^t)\operatorname{to}(A)}\}$ $\operatorname{recv}(ra_1^t)$ $[\neg \operatorname{send}(a_2^t)\operatorname{to}(A)]$ {send} $(r_2^t)\operatorname{to}(A)$: send $(a_2^t)\operatorname{to}(A)$ } $\operatorname{recv}(rb_1^t)$ $[\neg \operatorname{send}(a_2^t)\operatorname{to}(A)]$ {send} $(r_2^t)\operatorname{to}(B)$: send $(a_2^t)\operatorname{to}(B)$ }

Protocol Syntax: Participants and Channels

Participants $P = (a, R, IK, level) \in \mathcal{P}$ where:

- *a*: identity
- *R*: role
- *IK*: initial knowledge
- $level \in \{honest, weakly, strongly\}$: honesty level

Channels $C = (s, r, level) \in Com$ where:

- *s* and *r*: identities of sender and receiver
- $level \in \{operational, resilient, unreliable\}$: reliability level

ATS

[R. Alur, A. Henzinger, O. Kupferman – Alternating-Time Temporal Logic]

$$S = (\Sigma, Q, q_0, \delta, \pi, \Pi)$$

- Σ : finite set of agents
- For each $a \in \Sigma$:

Q_a: set of *a*'s local states $Q = \prod Q_a \text{ and } q_0 \in Q$ *δ_a*: *Q* → 2^{*Q_a*}: *a*'s local transition function $q \xrightarrow{\delta} q' \iff \forall a \in \Sigma. \ q \xrightarrow{\delta_a} q'_a$

- Π : set of atomic propositions
- $\pi: Q \to 2^{\Pi}$: valuation

ATL

[R. Alur, A. Henzinger, O. Kupferman – Alternating-Time Temporal Logic] An ATL-formula φ is one of the following :

- $p \in \Pi$
- $\neg \varphi$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$
- $\langle\!\langle A \rangle\!\rangle \bigcirc \varphi$, $\langle\!\langle A \rangle\!\rangle \varphi_1 \mathcal{U} \varphi_2$, $\langle\!\langle A \rangle\!\rangle \square \varphi$, $\langle\!\langle A \rangle\!\rangle \diamondsuit \varphi$
- $\llbracket A \rrbracket \bigcirc \varphi$, $\llbracket A \rrbracket \varphi_1 \mathcal{U} \varphi_2$, $\llbracket A \rrbracket \Box \varphi$, $\llbracket A \rrbracket \Diamond \varphi$

Protocol Semantics

Define local states of the ATS:

- each $P \in \mathcal{P}$ is an agent with:
 - \blacktriangleright Q_P records:
 - Sent and received messages
 - [Stopped or not]
- each $C \in \text{Com}$ is an agent with:
 - \blacktriangleright Q_C records
 - transmitted messages

Protocol Semantics: Honesty and Reliability

Define local transition function depending on:

- Honesty levels:
 - Honest: Respects the protocol
 - Weakly dishonest: Accepts and forges new messages
 - Strongly dishonest: Spy communications
- Reliability levels:
 - Operational: Messages sent are delivered immediately
 - Resilient: Messages sent are delivered after a finite unknown amount of time
 - Unreliable: Messages can be lost

Formal Properties

• Fairness (for *B*):

 $\neg \langle\!\langle A, T, \mathsf{Com} \rangle\!\rangle \Diamond (contract_A \land \neg \langle\!\langle B \rangle\!\rangle \Diamond contract_B)$

• Timeliness (for *B*):

 $\langle\!\langle B \rangle\!\rangle \diamond((B_stop \land (contract_B \lor \neg \langle\!\langle A, T, \mathsf{Com} \rangle\!\rangle \diamond contract_A))$

• Abuse-Freeness (for *A*):

 $\neg \langle\!\langle A, T, \mathsf{Com} \rangle\!\rangle \diamond \quad (involved_A \land \\ (\langle\!\langle A, T, \mathsf{Com} \rangle\!\rangle \diamond \quad (aborted_A \land \\ (\neg \langle\!\langle B \rangle\!\rangle \diamond contract_B))) \land \\ (\langle\!\langle A, T, \mathsf{Com} \rangle\!\rangle \diamond (contract_A)))$

Problem

• Infinite ATS

infinite set of messages that can be constructed by a malicious participant: infinite set of nonces, ciphers or hashes that cannot be checked, requests to TTP, ...

Model-checking not applicable

Solution: use of abstractions

[T. A. Henzinger, R. Majumdar, F. Mang, J.-F. Raskin Abstract Interpretation of Game Properties]

• Principle: abstract δ_a by $(\delta_{a\oplus}, \delta_{a\ominus})$ where: $\delta_{a\oplus}$ (resp. $\delta_{a\ominus}$) gives more (resp. less) power to a

[T. A. Henzinger, R. Majumdar, F. Mang, J.-F. Raskin Abstract Interpretation of Game Properties]

- Principle: abstract δ_a by $(\delta_{a\oplus}, \delta_{a\ominus})$ where: $\delta_{a\oplus}$ (resp. $\delta_{a\ominus}$) gives more (resp. less) power to a
- Precisely:

> surjections
$$\alpha_a: Q_a \to Q_a^{\alpha}$$

$$\blacktriangleright Q^{\alpha} = \prod Q_a^{\alpha}$$
 and $\alpha = \prod \alpha_a$

► $(\delta_{a\oplus}, \delta_{a\ominus})$ such that:

[T. A. Henzinger, R. Majumdar, F. Mang, J.-F. Raskin Abstract Interpretation of Game Properties]

- Principle: abstract δ_a by $(\delta_{a\oplus}, \delta_{a\ominus})$ where: $\delta_{a\oplus}$ (resp. $\delta_{a\ominus}$) gives more (resp. less) power to a
- Precisely:

> surjections
$$\alpha_a: Q_a \to Q_a^{\alpha}$$

$$\blacktriangleright Q^{\alpha} = \prod Q_a^{\alpha}$$
 and $\alpha = \prod \alpha_a$

► $(\delta_{a\oplus}, \delta_{a\ominus})$ such that:

Other conditions about initial states and valuation

[T. A. Henzinger, R. Majumdar, F. Mang, J.-F. Raskin Abstract Interpretation of Game Properties]

- Principle: abstract δ_a by $(\delta_{a\oplus}, \delta_{a\ominus})$ where: $\delta_{a\oplus}$ (resp. $\delta_{a\ominus}$) gives more (resp. less) power to a
- Precisely:

> surjections
$$\alpha_a: Q_a \to Q_a^{\alpha}$$

$$\blacktriangleright Q^{\alpha} = \prod Q_a^{\alpha}$$
 and $\alpha = \prod \alpha_a$

► $(\delta_{a\oplus}, \delta_{a\ominus})$ such that:

- Other conditions about initial states and valuation
- Notation $S^{\alpha}[A, \Sigma \setminus A]$ for $A \subseteq \Sigma$

• Allow negation only at propositional level

• To verify:
$$\begin{array}{ccc} S \models \langle\!\langle A \rangle\!\rangle \phi & \text{use} & S^{\alpha}[A, \Sigma \setminus A] \\ S \models \llbracket\![A]\!] \phi & \text{use} & S^{\alpha}[\Sigma \setminus A, A] \end{array}$$

Correctness result:

 $\text{ if }S^{\alpha}\models\varphi\text{ then }S\models\varphi\\$

Abstractions for Protocols

- Concrete semantics contains an infinite set of ground messages
- Avoid ground messages: message patterns + "symbolic substitution" on variables
- Define abstraction function $\alpha: Q \to Q^{\alpha}$
- Given a protocol description, an abstraction Compute the abstract semantics of the protocol

Implementation

[http://www-cad.eecs.berkeley.edu/~tah/mocha/]

- Given a protocol specification, an abstraction Compute a set of MOCHA modules Implementing the abstract semantics of the protocol
- Given an ATL-formula Compute a MOCHA script to check it

Conclusion and Future Work

- Precise semantics for optimistic fair exchange protocol
- Rigorous reduction to a finite, sufficiently small, model
- Implementation

Future work:

- Extension to multi-session
- Extension to multi-party protocols