
IDENTIFYING POTENTIAL TYPE
CONFUSION ATTACKS IN

AUTHENTICATED MESSAGES

Catherine Meadows
Code 5543

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, DC 20375
meadows@itd.nrl.navy.mil

http://chacs.nrl.navy.mil

WHAT IS A TYPE CONFUSION
ATTACK?

• Attack on a protocol that relies on a principal’s inability
to distinguish between two strings of two different
types
– Hard to verify that type confusion attacks are realistic

– Depends on formatting of data

• What we show in this talk
– Example of a realistic type confusion attacks

– Formal model of type confusion

– Outline of a technique for detecting type confusion

A SIMPLE TYPE CONFUSION
ATTACK

Needham-Schroeder public key protocol
1. A -> S: B
2. S -> A: {KB,B}SigS

3. A -> B: {RA,A}KB

4. B -> S: A
5. S -> B: {KA,A}SigS

6. B -> A: {RA,RB}KA

7. A -> B: {RB}KB

THE “ATTACK”
3. IA -> B: {RI,A}KB
4. B -> S: A
5. S -> B: {KA,A}SigS
6. B -> A: {RI,RB}KA

I intercepts this message

3’. IRB -> A: {RI,RB}KA
I sends the intercepted message to A as an initiator’s message, with RB

as the name field

4’. A -> S: RB
A sends the “name” RB to S in order to get its public key

7. IA -> B: {RB}KB
I now has the information it needs to impersonate A to B. It encrypts RB

with KB and sends it to B

HOW TO PREVENT IT

• These type of attacks are easy to prevent, in principle
• Any implementation of a protocol will generally include

fields that describe the type of data that is being passed in
them

• Heather, Lowe, and Schneider have shown that, assuming
the Dolev-Yao attacker model, labelling is enough to
prevent type confusion attacks
– Dolev-Yao model

• Intruder who can read, alter, intercept traffic, perform crypto operations
• May be in league with dishonest principals
• Can not break cryptosystem or guess keys

• Are there any realistic examples of type confusion attacks?

A MORE REALISTIC TYPE
CONFUSION ATTACK

• Found in Group Domain of Interpretation (GDOI) protocol
• Protocol facilitating distribution of group keys by Group Controller

Key Server (GCKS)
• Based on ISAKMP and IKE

– Standards developed for key exchange between two principals

• GDOI uses
– IKE to distribute pairwise keys
– Groupkey Pull Protocol initiated by member to distribute Key

Encryption Keys (KEKs) to new group member
– Groupkey Push Message to distribute KEK and Traffic Encryption

Keys (TEKs) to existing group members

• GDOI uses ISAKMP formatting conventions
– Using conventions designed for pairwise protocols in group protocols

caused some problems, as it turned out

GDOI PROTOCOLS
Groupkey Pull Protocol

!!!!!!! Initiator (Member)!!!!!!!!!!!!!!!!!! Responder (GCKS)
! ! ! ! ! ! ! ------------------!!!!!!!!!!!!!!!!!! ----------------
! ! ! ! ! ! ! HDR*, HASH(1), Ni, ID !! -->
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! <--! ! ! ! HDR*, HASH(2), Nr, SA
! ! ! ! ! ! ! HDR*, HASH(3) [, KE_I]!!! -->
 [,CERT] [,POP_I]
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! <--! ! ! ! HDR*, HASH(4), [KE_R,] SEQ,
 KD [,CERT] [,POP_R]

CERT used to verify information about principals
POP used to verify possession of key provided in CERT
POP = signature on hash of Ni,Nr
HDR begins with random numbers contributed by both principals

Groupkey Push Message

 Member !!!!!!!!!!!!!!!!!! GCKS or Delegate
! ! ! ! ! ! ! ------ !!!!!!!!!!!!!!!!!! ----------------

!!!!!!!!!!!!!!!!!! !!<----!HDR*, SEQ, SA, KD, [CERT,] SIG

HDR begins with random number supplied by GCKS
All other message fields identified by type and length labels
Signature taken over hash of entire message (before encryption), including header
KD is likely to end in a random number

POSSIBLE ATTACK

• In third message of groupkey pull protocol, GCKS signs
(NA,NB)
– NA member’s nonce, NB the GCKS’s nonce

• Suppose
– Group member dishonest

• Then ...

SIG

Ni

POP_I

POP_R

G R O U P

G
R
O
U
P
K
E
Y
P
U
L
L

G
R
O
U
P
K
E
Y
P
U
S
H

Dishonest Member GCKS

HDR*,HASH(1),HDR’,SEQ’,SA’,KD’,ID

HDR*,HASH(2),Nr,SA

HDR*,HASH(3),
SIG KM(HDR’,SEQ’,SA’,KD’,Nr)

HDR*,HASH(4),SEQ,KD,
 SIGGCKS(HDR’,SEQ’,SA’,KD’,Nr)

HDR’*,SEQ’,SA’,Nr,
SIGGCKS(HDR’,SEQ’,SA’,KD’,Nr)

HOW TO AVOID THESE

• Require principals not to accept signed message unless
contains nonce contributed by that principal
– Not an option for group protocols

• Require different mechanisms for different apps.
– Examples

• Different signature keys for POP and groupkey
• Different hash function
• Keyed hash function with different keys

– Often the best option, but too much reliance on this could lead
to intractable key management problem

• Solution chosen: take signature over message and label
indicating type of message
– Similar to solution recommended by Heather, Lowe and

Schneider

WHY WORRY ABOUT TYPE
CONFUSION WHEN SEEMS EASY TO

AVOID IT?
• Can design protocols so that they are free of type

confusion, but what about protocols they interact with?
• A similar type confusion attack we found with NPA

relied upon interaction with ISAKMP, protocol GDOI
built on top of

• Type confusion analysis will help us determine
whether or not it is safe for two protocols to interact
– Carrying Herzog and Guttman’s work one step further

– They show protecting against harmful interaction boils
down to protecting against confusion between
messages

A CLOSER LOOK: WHEN IS THE
GDOI ATTACK POSSIBLE?

• Depends upon relationship between types and lengths
of data used in the two messages

• First message contains two random strings Ni and Nr
– Only Nr recognizable by message generator

• Second message contains a string of recognizable and
random fields F, followed by a random string S

• Constraints are
– Length(Ni) ≥ Length (F)

– Length(Nr) ≤ Length(S)

– Length(Ni) + Length(Nr) = Length(F) + Length(S)

SOLUTION WILL HAVE THREE PARTS

• Definition of
– type

– type local to a principal

– type under the control of a principal

• Definition of game between intruder and honest
principals

• Procedure for determining whether or not intruder can
win, and what is the probability of winning

DEFINITION OF TYPE

• A type is either a set of bit-strings, or a probability
function whose domain is a set of bit-strings

• A type member choice is the act of choosing a member
of that type

• We say that a type is under control of a principal A if A is
the principal who performs the type member choice

• We say that a type is local to A if A is able to verify
membership in the type

WHAT MESSAGES LOOK LIKE
• Masquerading message constructed by an honest principal A

– Possibly containing information supplied by the intruder

• Spoofed message expected by an honest principal B
• From A’s point of view, masquerading message constructed from

– Types controlled by A
• Data it constructed itself

– Types controlled by other honest principals
• Data constructed by other honest principals whose origin it can verify

– Types directly controlled by the intruder
• Data generated by the intruder

• From B’s point of view spoofed message constructed from
– Types controlled by B

• Data it constructed itself that it is expecting to see in the message

– Types controlled by other honest principals
• Data constructed by others received previously, that it is expecting to see in the message

– Types directly controlled by the intruder
• Data constructed by the intruder that B received previously

– Types indirectly controlled by the intruder
• Data B is seeing for the first time

EXAMPLE
1. A -> B : NA 1’. B ->A : N’’B

NA nonce of length N

2. B -> A: NB, SB(NA, NB) 2’. A -> B: N’’A, SA(N’’B, N’’A)
NB nonce of length N

3. A -> B: SA(NB,N’A) 3’. B -> A: SB(N’’A, N’’’B)
 N’A nonce of length N

• Let < X, NB > from line 2 be a masquerading message sent from B to A in the
first instance of the protocol
– NB

• Set of bit-strings of length N with uniform distribution
• Is under control of B

– X
• Set of bit-strings of length N
• Is under the direct control of the intruder

• Let < N’’A,Y > from line 3 be a spoofed message from B to A second instance
– N’’A

• Set of bit-strings of length N with uniform distribution
• Is under control of A

– Y
• Set of bit-strings of length N
• Is under the indirect control of the intruder

DEFINITION OF TYPE FUNCTION
TREE

• Expressed as a function because choice of later fields may be
influenced by choice of earlier fields

• A type function tree is a function R from lists of bit-strings to
types, such that:
1. The empty list <> is in the domain of R
2. A list of bit-strings <x1,…,xk> is in the domain of R if and only if

– < x1,…,xk-1> e dom(R)
– x_k e R (< x1,…,xk-1>))

3. There exists an integer h, called the height of R , such that for any
n > h, R (< x1,…,xn>) = {i}, where i is the empty string

• We let R k denote the restriction of R to k-tuples
• Type function tree reflects temporal and causal order of choice

of fields in a message

EXAMPLE (AGAIN)
1. A -> B : NA 1’. B ->A : N’’B

NA nonce of length N

2. B -> A: NB, SB(NA, NB) 2’. A -> B: N’’A, SA(N’’B, N’’A)
NB nonce of length N

3. A -> B: SA(NB,N’A) 3’. B -> A: SB(N’’A, N’’’B)

• Let < X, NB > from line 2 be the masquerading message
• Let < N’’A,Y > from line 3 be the spoofed message
• Two type function trees

Corresponding to < X, NB >
R (<>) = X 2. R (<x1>) = NB

Corresponding to < N’A ,Y>
1. S (<>) = N’’A 2.S (<x1>) = Y

INTERLEAVING TYPE FUNCTION
TREES

• Let R 1 and R 2 be two type function trees of height h1 and h2,
respectively

• Define an interleaving I of R 1 and R 2 as follows
– Let q1 and q2 be monotone increasing injections of <1,…,h1>

and <1,…,h2> into <1,…,h> such that each member of <1,…,h>
is in the image of q1 or q2

– If 1 = qi(t) for some t, we let I (<>) = Ri(<>)
– If <x1,…,xk> is in the domain of I, and k+1 is in the image of qi,

we let I (<x1,…,xk>) = Ri (<xj1,…,xjt>) where <j1,…,jt> is the
maximal subsequence of <1,…, k> in the image of qi

• An interleaving of two different type function trees is also a
type function tree if q1 and q2 are disjoint or if the two type
function trees agree on some initial common data

EXAMPLE (AGAIN)
1. A -> B : NA 1’. B ->A : N’’B

NA nonce of length N

2. B -> A: NB, SB(NA, NB) 2’. A -> B: N’’A, SA(N’’B, N’’A)
NB nonce of length N

3. A -> B: SA(NB,N’A) 3’. B -> A: SB(N’’A, N’’’B)

< X, NB >(line 2) masquerading message & < N’’A,Y > (line 3) spoofed message

Two type function trees
Corresponding to < X, NB >
1. R (<>) = X. 2. R (<x1>) = NB

Corresponding to < N’A ,Y>
1. S (<>) = N’’A 2.S (<x1>) = Y

Some possible interleavings
Case 1: N’ ’A learned by intruder before X and NB before Y

1. I(<>) = N’’A. 2. I (<x1>) = X 3. I (<x1,x2>) = NB 4. I (<x1,x2,x3>) = Y

Case 2: N’ ’A learned by intruder after X and NB before Y
1. I(<>) = X 2. I (<x1>) = NB 3. I (<x1,x2>) = N’’A 4. I (< x1,x2,x3 >) = Y

MESSAGE TYPE

• Let R be a type function tree of height h
• Let r be a map from some <1,…,q> onto <1,…,h>
• We say that M is a message type constructed from R

via r if
– M consists of all fields of the form y1 || … || yq such that

there exists an <x1,…,xh> in the domain of R h such
that yj = xi whenever j = r(i)

• We call r a message surjection
• Message surjections allow us to capture the fact that

order of appearance of data in a message does not
reflect order in which it was generated

A GAME BETWEEN INTRUDER
AND HONEST PRINCIPALS

• Fix on an order for choosing members of types by
honest principals and intruder

• Have honest principals choose members according to
the rules of the protocol

• Have intruder choose members in according to a
strategy that maximizes the probability of a successful
masquerade

• Winning strategy is one that puts probability of success
above a certain threshold

EXAMPLE (again)
1. A -> B : NA 1’. B ->A : N’’B

NA nonce of length N

2. B -> A: NB, SB(NA, NB) 2’. A -> B: N’’A, SA(N’’B, N’’A)
NB nonce of length N

3. A -> B: SA(NB,N’A) 3’. B -> A: SB(N’’A, N’’’B)

• Let < X, NB > from line 2 be the masquerading message
• Let < N’’A,Y > from line 3 be the spoofed message
Case 1: N’A learned by intruder before X or and NB before Y

1. I (<>) = N’’A. 2. I (<x1>) = X 3. I (<x1,x2>) = NB 4. I (<x1,x2,x3>) = Y

A chooses x1 randomly from N’’A, B chooses x3 randomly from NB,
Winning strategy: choose x2 = N’’A and x4 = NB

Case 2: Suppose N’’A learned by intruder after X and NB before Y
1. I (<>) = X 2. I (<x1>) = NB 3. I (<x1,x2>) = N’’A 4. I(< x1,x2,x3 >) = Y

Intruder chooses x1 from X, A chooses x2 randomly from N’’A, B chooses x3
randomly from NB

Best strategy: choose any member of X, and choose x4 = x3

Probability of spoofing = 1/2N

HOW TO COMPUTE
PROBABILITY OF SUCCESS IN

GENERAL CASE
• Use the fact that intruder’s success in inducing type

confusion will depend on which types he tries to match
with each other

• This in turn introduces constraints on lengths of fields in
respective messages

• What we need: a list of the possible constraints

CONSTRAINT TREES
Let <i1 ,…, im> and <j1 , …, jn> be two sets of indices
We construct a constraint tree as follows
1. Root of constraint tree is the empty set
2. Children of the root are

C1 = {l(xi(1)) < l(xj(1))}
C2 = {l(xi(1)) > l(x j(1)), l(x i(1)) < l(x j(1)) + l(x j(2))},
…,
Cn-1 = {l(x i(1)) > l(x j(1)) + … + l(x j(n-1)), l(x i(1)) < l(x j(1)) + … + l(x j(n))}

3. If D at s’th level is a node containing l(x i(1)) + … + l(x i(s)) < l(x j(1)) + … +
l(x j(t)), construct children as follows
D1 = D U {l(x i(1)) + … + l(x i(s+1)) < l(x j(1)) + … + l(x j(t))},
D2 = D U {l(x i(1)) + … + l(x i(s+1)) > l(x j(1)) + … + l(x j(t)), l(x i(1)) + … + l(x i(s+1))

< l(x j(1)) + … + l(x j(t+1))},
…,
Dn-1 = D U {l(x i(1)) + … + l(x i(s+1)) > l(x j(1)) + … + l(x j(n-1)), l(x i(1)) + … + l(x

i(s+1)) < l(x j(1)) + … + l(x j(n))}

THE GAP-TOOTHED ZIPPER

Let R and S be two type function trees of height h1 and h2

Let r1be a function from <1,…,t1> onto <1,…,h1>
constructing a masquerading message

Let r2 be a function from <1,…,t2> onto <1,…,h2>
constructing a spoofed message

Let I be an interleaving of R and S constructed using
injections t1 and t2

Let p be a number between 0 and 1
We construct a gap-toothed zipper Z (I ,p) as follows

HOW TO CONSTRUCT THE GAP-
TOOTHED ZIPPER

• To each leaf node C of the constraint tree, add the equation E
=
x q1r1(1) || … || x q1r1(t1) = x q2r2(1) || … || x q2r2 (t2)

• For each set of constraints B constructed as above
– Choose members of types consistent with B in the order they

appear in I
– Choose according to defined probability distribution if under

the control of honest principals
– Choose according to some distribution d if under the direct

control of the intruder
– After each choice, check whether probability E satisfied given

C satisfied is less than p
• If it is, discard the sequence of choices
• If not, continue choosing members of types

EXAMPLE
1. A -> B : NA 1’. B ->A : N’’B

NA nonce of length N N’’b nonce of length N

2. B -> A: NB, SB(NA, NB) 2’. A -> B: N’’A, SA(N’’B, N’’A)
NB nonce of length M N’’A nonce of length M

3. A -> B: SA(NB,N’A) 3’. B -> A: SB(N’’A, N’’’B)
 N’A nonce of length N’ N’’’B nonce of length N’
Masquerading message: 2nd message (X, NB)

X of length N, NB of length M

Spoofed message: 3rd message (N’’A, Y)
N’’A of length M, Y of length N’ (= N by length constraints)

Order of choice: x1 =N’’A, x2 = X, x3 = NB, x4 = Y
Equality constraint x2 || x3 = x1 || x4
Look at the following length constraint
C1 = {l(x2) < l(x1), l(x2) + l(x3) = l(x1) + l(x4)}
Assume N and M chosen so that C sat., e.g. N < M

The Zipper in Action

x1 e N’’A x4 e Y

x2 e X x3 e NB

Choose x1. Probability x1 consistent with constraints is 1
Choose x2. Probability <x1,x2> consistent with constraints is 1 if choose x2
equal to first l(x2) bits of x1, 0 otherwise
Choose x3. Prob. <x1,x2,x3> consistent with constraints is 1/2(l(x1)-l(x2))

Choose x4. Cond. Prob. of sat constraints is 1 if choose x4 equal to last l(x4)
bits of x3, 0 otherwise

Final probability: 1/2(l(x1)-l(x2))

Order of choice: x1 e N’’A, x2 e X, x3 e NB, x4e Y
Equality constraint: x2 || x3 = x1 || x4
Length constraint: {l(x2) < l(x1), l(x2) + l(x3) = l(x1) + l(x4)}

CONCLUSIONS AND
DISCUSSION

• Have developed methodology for identifying type confusion
– Takes into account possibility of confusing pieces of fields

with each other as well as entire fields

– Takes into account probabilistic nature of type confusion

• Some possible extensions
– Type function trees of unbounded height

• Especially, unbounded repetitions of the same type

– Applying technique to encryption functions as well
• Type confusion attacks found by Bellovin on ESP

– ESP did not distinguish between beginning, middle, and end of a message

– Allowed for various types of truncation and cut-and-paste attacks

• Extra difficulty in encryption: encrypted message will have type of
message if one knows the key, type of random nonces if not

