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Introduction

Cryptographic protocols: two models, alike in dignity
Formal, or Dolev-Yao model
Computational model from complexity theory

Much recent work relates the two
Build formal-to-computational protocol interpretation
Map formal security goals to computational goals
Prove soundness or completeness
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AR Logic of Formal Encryption

AR define a very simple algebra of terms;

Expressions are built from two simple sets
Keys = {K1,K2,K3, ...} and Blocks ⊆ {0, 1}∗ via paring
and encryption;

Exp ::= Keys | Blocks | (Exp, Exp) | {Exp}Keys |

Pat ::= Keys | Blocks | (Pat, Pat) | {Pat}Keys | �

(({0}K8
, {100}K1

), (( K7 , {( {0101}K9
, {K8}K5

)}K5
, {K5}K7

))

(({0}K8
, � ), (( K7 , {( � , {K8}K5

)}K5
, {K5}K7

))

Two expressions M and N are defined to be equivalent
if P (M) = P (N)σ for some key-renaming function σ.

We denote this by M ∼= N .
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AR Logic of Formal Encryption (cont.)

Formal expressions are mapped to (interpreted in) the
computational model as follows:

For each K ∈ Keys(M) generate a key using the key
generation algorithm;
Each B ∈ Blocks is mapped to B;
Each pair (M,N) is interpreted as the pair of the
interpretations;
Each encryption is interpreted by running the
encryption algorithm.

For expression M we denote its interpretation by [[M ]]Φ.
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AR Logic of Formal Encryption (cont.)

Theorem: Let M and N be acyclic expressions and let
Π be a type-0 secure encryption scheme. Suppose that
M ∼= N . Then [[M ]]Φ ≈ [[N ]]Φ.
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AR Logic of Formal Encryption (cont.)

Theorem: Let M and N be acyclic expressions and let
Π be a type-0 secure encryption scheme. Suppose that
M ∼= N . Then [[M ]]Φ ≈ [[N ]]Φ.

Problem: This result does not apply to self-encrypting
keys;
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AR Logic of Formal Encryption (cont.)

Theorem: Let M and N be acyclic expressions and let
Π be a type-0 secure encryption scheme. Suppose that
M ∼= N . Then [[M ]]Φ ≈ [[N ]]Φ.

Problem: This result does not apply to self-encrypting
keys;

What do we propose: Solve this problem via
sufficiently strong crypto;
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AR Logic of Formal Encryption (cont.)

Theorem: Let M and N be acyclic expressions and let
Π be a type-0 secure encryption scheme. Suppose that
M ∼= N . Then [[M ]]Φ ≈ [[N ]]Φ.

Problem: This result does not apply to self-encrypting
keys;

What do we propose: Solve this problem via
sufficiently strong crypto;

[L02] proposed a solution for the problem of key-cycles
by strengthening the formal adversary.
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The problem of key-cycles

More general form of self-encryption:
K1 encrypts K2

K2 encrypts K3. . .
Kn encrypts K1

(Asymmetric encryption: Ki encrypts K−1
i−1)

Can actually occur in Dolev-Yao model

Possible to interpret formal messages with key cycles

But known completeness or soundness results do not
hold

How to interpret? Two possibilities:
Reflects weakness of underlying crypto
Reflects weakness of proof methods
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Underlying crypto

Semantic security: main computational definition of
security for public-key encryption

Adversary cannot distinguish encryptions of M1, M2

Adversary gets to choose M1, M2 itself
Adversary knows public (encryption) key k

Note: adversary does not know decryption key k−1

M1, M2 cannot depend on k−1

No obvious security guarantees if they do
Same phenomena for CCA-1, CCA-2

Dolev-Yao model: self-encrypting keys are A-OK

Might actually be a real gap between the two models
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Previous proof methods

AR, AJ: soundness for indistinguishability properties

MW, HG: completeness for indisitinguishability
properties

B, ABS: more general soundness, completeness
properties

H: soundness for non-malleability properties

BPW: soundness for general trace-based properties

HC, MW: soundness, completeness for MA, KE
properties

L: soundness via strengthening the “formal adversary"

(Almost) all (soundness) proofs rely on some hybrid
argument
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Previous proof methods

Previous results rely on hybrid argument
Powerful proof technique from computational crypto
Used to show: distinguishability of compound
objects ⇒ distinguishability of atomic objects

Example: suppose this row (as a whole)

◦ � ◦ ◦ ◦ ◦ � � ◦ ◦

is distinguishable from this row (as a whole):

◦ ◦ ◦ � � � � � � ◦

Distinguishability ∼= distance in metric space
Better to say “distinguishable with advantage P ”
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The Hybrid Argument (cont.)

Insert 10 intermediate rows
Each row changes at most one column

◦ � ◦ ◦ ◦ ◦ � � ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ � � ◦ ◦

◦ ◦ ◦ � ◦ ◦ � � ◦ ◦

. . .

◦ ◦ ◦ � � � � � ◦ ◦

◦ ◦ ◦ � � � � � � ◦

By contradiction, must be two neighbors with distance
≥ P/10.

Suppose rows 2 & 3
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The Hybrid Argument (cont.)

Suppose X is either ◦ or �.

How to distinguish?

Build the following:

◦ ◦ ◦ X ◦ ◦ � � ◦ ◦

If X is ◦, then this is row 2
If X is �, then this is row 3
By above, adversary has advantage ≥ P/10 in
distinguishing

Advantage in distinguishing ◦, � must be ≥ P/10
as well
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Hybrid argument (conc.)

If ◦, � are indistinguishable, then top & bottom rows are
as well

Indistinguishable: negligible as security parameter
grows
Negligible: shrinks faster than any polynomial

Argument depends on:
Number of rows is polynomial in security parameter
Given entry for one column, can create rest of any
row
Possible to “walk” from top to bottom by changing
only one column at a time

Why doesn’t this work for key-cycles?
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AR hybrid argument

Want to show that M , pattern of M (P (M)) are
indistinguishable

Build table:

M = K−1
1 {K2}K1

{101}K3
{K−1

5 }K4
{101}K5

K−1
1 {K2}K1

{101}K3
{K−1

5 }K4
�K5

K−1
1 {K2}K1

{101}K3
�K4

�K5

P (M) = K−1
1 {K2}K1

�K3
�K4

�K5

(�k: undecipherable encryption; maps to {0}K)

If top & bottom are distinguishable, then {M ′}K′ & �K′

distinguishable
For some sub-message M ′, some single key K ′
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Key cycles

Suppose M has a key-cycle. What should the rows be?

M = K−1
1 {K2}K1

{K−1
4 }K3

{K−1
3 }K4

{101}K5

K−1
1 {K2}K1

{K−1
4 }K3

{K−1
3 }K4

�K5

K−1
1 {K2}K1

? ? �K5

If next row is . . . �K3
�K4

. . ., no longer isolating one key

Only other option: replace only one encryption

WLOG, . . . {K−1
4 }K3

�K4
. . .
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Key cycles (cont.)

If next row is . . . {K−1
4 }K3

�K4
. . ., distinguishable

neighbors might be:

K−1
1 {K2}K1

{K−1
4 }K3

{K−1
3 }K4

�K5

K−1
1 {K2}K1

{K−1
4 }K3

�K4
�K5

Does this let us distinguish �K4
and {K−1

3 }K4
?

Given X ∈ {�K4
, {K−1

3 }K4
}, must make rest of row

How to make {K−1
4 }K3

from �K4
?
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Resolving key-cycles

Current results silent about key cycles

Two possibilities:
1. Key-cycles not necessarily secure in computational

model
2. Key-cycles incompatible with hybrid argument

This talk: can prove soundness for key-cycles
Will even use hybrid argument
Look beyond semantic security
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Key-dependent messages (KDMs)

Consider following game:

Referee creates fresh random key-pair (k, k−1)

Adversary gets k, creates function f

Referee secretly flips coin:
Heads: encrypts f(k−1)

Tails: encrypts 0|f(k−1)|

Adversary gets ciphertext, tries to determine which one

Random guessing yields 50% success rate

Want: can’t do better than this
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Actual KDM-security

Definition for KDM security actually more general

Referee creates vector of keys (~k, ~k−1)

Referee also flips coin once:

Adversary gets ~k, produces (i, f)

Heads: referee encrypts f( ~k−1) in ki

Tails: referee encrypts 0|f( ~k−1)| in ki

As many of these rounds as adversary wants

KDM security [BRS, CL]: can only guess coin-flip
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Motivation for KDM-security

KDM security introduced by BRS with the purpose of
strengthening the adversary (stronger than CPA);

Independently, a similar (weaker??) version called
circular security was introduced by CL to deal with
anonimity and credentials revocation;

NO relation is known between CCA/CCA2 and KDM (or
circular security)
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The new hybrid argument

Table has only 2 rows:

M = K−1
1 {K2}K1

{K−1
4 }K3

{K−1
3 }K4

{101}K5

K−1
1 {K2}K1

{0|K
−1

4
|}K3

{0|K
−1

3
|}K4

{000}K5

Distinguishing these two rows breaks KDM security
directly

Special case where adversary asks referee to

Encrypt K−1
4 in K3

Encrypt K−1
3 in K4

Encrypt 101 in K5
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What does this mean?

Theorem: Let M and N be expressions and let Π be a
KDM-secure encryption scheme. Suppose that M ∼= N .
Then [[M ]]Φ ≈ [[N ]]Φ.
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What does this mean?

Theorem: Let M and N be expressions and let Π be a
KDM-secure encryption scheme. Suppose that M ∼= N .
Then [[M ]]Φ ≈ [[N ]]Φ.

Sufficiently strong crypto guarantees soundness
Even in presence of key-cycles
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What does this mean?

Theorem: Let M and N be expressions and let Π be a
KDM-secure encryption scheme. Suppose that M ∼= N .
Then [[M ]]Φ ≈ [[N ]]Φ.

Sufficiently strong crypto guarantees soundness
Even in presence of key-cycles

Where was the original problem? Crypto or argument?
Still don’t know
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What does this mean?

Theorem: Let M and N be expressions and let Π be a
KDM-secure encryption scheme. Suppose that M ∼= N .
Then [[M ]]Φ ≈ [[N ]]Φ.

Sufficiently strong crypto guarantees soundness
Even in presence of key-cycles

Where was the original problem? Crypto or argument?
Still don’t know

We are still learning what DY model assumes about
underlying crypto

There are still surprises out there
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Future work

Same extensions of original AR result
Non-malleability?

Not all proofs use hybrid argument
BPW, HC use “simulation argument”
Assume no keys are encrypted!
Very strong, how to weaken?

Relationship between KDM-security, circular security,
semantic security?

Chosen-ciphertext security?
Note: may already be known...

Soundness of Formal Encryption in the Presence of Key Cycles – p. 22


	Introduction
	AR Logic of Formal Encryption
	AR Logic of Formal Encryption (cont.)
	AR Logic of Formal Encryption (cont.)
	AR Logic of Formal Encryption (cont.)
	AR Logic of Formal Encryption (cont.)
	AR Logic of Formal Encryption (cont.)

	The problem of key-cycles
	Underlying crypto
	Previous proof methods
	Previous proof methods
	The Hybrid Argument (cont.)
	The Hybrid Argument (cont.)
	Hybrid argument (conc.)
	AR hybrid argument
	Key cycles
	Key cycles (cont.)
	Resolving key-cycles
	Key-dependent messages (KDMs)
	Actual KDM-security
	Motivation for KDM-security
	The new hybrid argument
	What does this mean?
	What does this mean?
	What does this mean?
	What does this mean?

	Future work

