Soundness of Formal Encryption in the Presence of Key Cycles

Pedro Adão 1,2 , Gergei Bana 2 , Jonathan Herzog 3 and Andre Scedrov 2

pad@math.ist.utl.pt, {bana,scedrov}@math.upenn.edu, jherzog@mitre.org

¹ Center for Logic and Computation, IST, Lisboa

 2 Department of Mathematics, University of Pennsylvania

³ MITRE Corporation

Protocol eXchange Workshop February, 2 2005 Naval Postgraduate School, Monterey, CA

Introduction

- Cryptographic protocols: two models, alike in dignity
 - Formal, or Dolev-Yao model
 - Computational model from complexity theory
- Much recent work relates the two
 - Build formal-to-computational protocol interpretation
 - Map formal security goals to computational goals
 - Prove soundness or completeness

AR Logic of Formal Encryption

- AR define a very simple algebra of terms;
- Expressions are built from two simple sets $Keys = \{K_1, K_2, K_3, ...\}$ and $Blocks \subseteq \{0, 1\}^*$ via paring and encryption;

 $((\{0\}_{K_8}, \{100\}_{K_1}), ((K_7, \{(\{0101\}_{K_9}, \{K_8\}_{K_5})\}_{K_5}, \{K_5\}_{K_7})) \\ ((\{0\}_{K_8}, \Box), ((K_7, \{(\Box), \{K_8\}_{K_5})\}_{K_5}, \{K_5\}_{K_7})) \\ (\{0\}_{K_8}, \Box), ((K_7, \{(\Box), \{K_8\}_{K_5})\}_{K_5}, \{K_5\}_{K_7})) \\ (\{0\}_{K_8}, \{K_8\}_{K_5}) \} \\ (\{0\}_{K_8}, \{K_8\}_{K_5$

- Two expressions M and N are defined to be equivalent if $P(M) = P(N)\sigma$ for some key-renaming function σ .
- We denote this by $M \cong N$.

- Formal expressions are mapped to (interpreted in) the computational model as follows:
 - For each $K \in Keys(M)$ generate a key using the key generation algorithm;
 - Each $B \in$ Blocks is mapped to B;
 - Each pair (M, N) is interpreted as the pair of the interpretations;
 - Each encryption is interpreted by running the encryption algorithm.
- For expression M we denote its interpretation by $\llbracket M \rrbracket_{\Phi}$.

• Theorem: Let M and N be *acyclic expressions* and let Π be a type-0 secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.

- Theorem: Let M and N be acyclic expressions and let Π be a type-0 secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.
- Problem: This result does not apply to self-encrypting keys;

- Theorem: Let M and N be *acyclic expressions* and let Π be a type-0 secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.
- Problem: This result does not apply to self-encrypting keys;
- What do we propose: Solve this problem via sufficiently strong crypto;

- Theorem: Let M and N be *acyclic expressions* and let Π be a type-0 secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.
- Problem: This result does not apply to self-encrypting keys;
- What do we propose: Solve this problem via sufficiently strong crypto;
- [L02] proposed a solution for the problem of key-cycles by strengthening the formal adversary.

The problem of key-cycles

- More general form of self-encryption:
 - K_1 encrypts K_2
 - K_2 encrypts K_3 ...
 - K_n encrypts K_1
 - (Asymmetric encryption: K_i encrypts K_{i-1}^{-1})
- Can actually occur in Dolev-Yao model
- Possible to interpret formal messages with key cycles
- But known completeness or soundness results do not hold
- How to interpret? Two possibilities:
 - Reflects weakness of underlying crypto
 - Reflects weakness of proof methods

Underlying crypto

- Semantic security: main computational definition of security for public-key encryption
 - Adversary cannot distinguish encryptions of M_1 , M_2
 - Adversary gets to choose M_1 , M_2 itself
 - Adversary knows public (encryption) key k
- Note: adversary does not know decryption key k^{-1}
 - M_1 , M_2 cannot depend on k^{-1}
 - No obvious security guarantees if they do
 - Same phenomena for CCA-1, CCA-2
- Dolev-Yao model: self-encrypting keys are A-OK
- Might actually be a real gap between the two models

Previous proof methods

- AR, AJ: soundness for indistinguishability properties
- MW, HG: completeness for indisitinguishability properties
- B, ABS: more general soundness, completeness properties
- H: soundness for non-malleability properties
- BPW: soundness for general trace-based properties
- HC, MW: soundness, completeness for MA, KE properties
- L: soundness via strengthening the "formal adversary"
- (Almost) all (soundness) proofs rely on some hybrid argument

Previous proof methods

Previous results rely on hybrid argument

- Powerful proof technique from computational crypto
- Used to show: distinguishability of compound objects \Rightarrow distinguishability of atomic objects

0

Example: suppose this row (as a whole)

 \mathbf{O}

is distinguishable from this row (as a whole):

 \mathbf{O}

Distinguishability ≅ distance in metric space
Better to say "distinguishable with advantage P"

The Hybrid Argument (cont.)

- Insert 10 intermediate rows
 - Each row changes at most one column

- By contradiction, must be two neighbors with distance $\ge P/10$.
- Suppose rows 2 & 3

The Hybrid Argument (cont.)

- Suppose X is either \circ or \Box .
- How to distinguish?
- Build the following:

 $\circ \circ \circ X \circ \circ \Box \Box \circ \circ$

- If X is \circ , then this is row 2
- If X is \Box , then this is row 3
- By above, adversary has advantage $\geq P/10$ in distinguishing
 - Advantage in distinguishing ◦, □ must be $\geq P/10$ as well

Hybrid argument (conc.)

- If ○, □ are indistinguishable, then top & bottom rows are as well
 - Indistinguishable: negligible as security parameter grows
 - Negligible: shrinks faster than any polynomial
- Argument depends on:
 - Number of rows is polynomial in security parameter
 - Given entry for one column, can create rest of any row
 - Possible to "walk" from top to bottom by changing only one column at a time
- Why doesn't this work for key-cycles?

AR hybrid argument

- Want to show that M, pattern of M (P(M)) are indistinguishable
- Build table:

$$M = K_1^{-1} \{K_2\}_{K_1} \{101\}_{K_3} \{K_5^{-1}\}_{K_4} \{101\}_{K_5}$$
$$K_1^{-1} \{K_2\}_{K_1} \{101\}_{K_3} \{K_5^{-1}\}_{K_4} \square_{K_5}$$
$$K_1^{-1} \{K_2\}_{K_1} \{101\}_{K_3} \square_{K_4} \square_{K_5}$$
$$P(M) = K_1^{-1} \{K_2\}_{K_1} \square_{K_3} \square_{K_4} \square_{K_5}$$

(\Box_k : undecipherable encryption; maps to $\{0\}_K$)

- If top & bottom are distinguishable, then $\{M'\}_{K'}$ & $\Box_{K'}$ distinguishable
 - For some sub-message M', some single key K'

Key cycles

• Suppose M has a key-cycle. What should the rows be?

$$M = K_1^{-1} \{K_2\}_{K_1} \{K_4^{-1}\}_{K_3} \{K_3^{-1}\}_{K_4} \{101\}_{K_5}$$
$$K_1^{-1} \{K_2\}_{K_1} \{K_4^{-1}\}_{K_3} \{K_3^{-1}\}_{K_4} \square_{K_5}$$
$$K_1^{-1} \{K_2\}_{K_1} ? ? \square_{K_5}$$

- If next row is $\ldots \square_{K_3} \square_{K_4} \ldots$, no longer isolating *one* key
- Only other option: replace only one encryption
 - WLOG, $\ldots \{K_4^{-1}\}_{K_3} \Box_{K_4} \ldots$

Key cycles (cont.)

If next row is $\ldots \{K_4^{-1}\}_{K_3} \square_{K_4} \ldots$, distinguishable neighbors might be:

- Does this let us distinguish \Box_{K_4} and $\{K_3^{-1}\}_{K_4}$?
 - Given $X \in \{\Box_{K_4}, \{K_3^{-1}\}_{K_4}\}$, must make rest of row
 - How to make $\{K_4^{-1}\}_{K_3}$ from \Box_{K_4} ?

Resolving key-cycles

- Current results silent about key cycles
- Two possibilities:
 - 1. Key-cycles not necessarily secure in computational model
 - 2. Key-cycles incompatible with hybrid argument
- This talk: can prove soundness for key-cycles
 - Will even use hybrid argument
 - Look beyond semantic security

Key-dependent messages (KDMs)

Consider following game:

- Solution Referee creates fresh random key-pair (k, k^{-1})
- Adversary gets k, creates function f
- Referee secretly flips coin:
 - Heads: encrypts $f(k^{-1})$
 - Tails: encrypts $0^{|f(k^{-1})|}$
- Adversary gets ciphertext, tries to determine which one
- Random guessing yields 50% success rate
- Want: can't do better than this

Actual KDM-security

- Definition for KDM security actually more general
- Referee creates *vector* of keys $(\vec{k}, \vec{k^{-1}})$
 - Referee also flips coin once:
- Adversary gets \vec{k} , produces (i, f)
 - Heads: referee encrypts $f(\vec{k-1})$ in k_i
 - Tails: referee encrypts $0^{|f(k^{-1})|}$ in k_i
- As many of these rounds as adversary wants
- *KDM security* [BRS, CL]: can only guess coin-flip

Motivation for KDM-security

- KDM security introduced by BRS with the purpose of strengthening the adversary (stronger than CPA);
- Independently, a similar (weaker??) version called circular security was introduced by CL to deal with anonimity and credentials revocation;
- NO relation is known between CCA/CCA2 and KDM (or circular security)

The new hybrid argument

Table has only 2 rows:

$$M = K_1^{-1} \{K_2\}_{K_1} \{K_4^{-1}\}_{K_3} \{K_3^{-1}\}_{K_4} \{101\}_{K_5} K_1^{-1} \{K_2\}_{K_1} \{0^{|K_4^{-1}|}\}_{K_3} \{0^{|K_3^{-1}|}\}_{K_4} \{000\}_{K_5}$$

- Distinguishing these two rows breaks KDM security directly
- Special case where adversary asks referee to
 - Encrypt K_4^{-1} in K_3
 - Encrypt K_3^{-1} in K_4
 - Encrypt 101 in K_5

• Theorem: Let M and N be expressions and let Π be a KDM-secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.

- Theorem: Let M and N be expressions and let Π be a KDM-secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.
- Sufficiently strong crypto guarantees soundness
 - Even in presence of key-cycles

- Theorem: Let M and N be expressions and let Π be a KDM-secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.
- Sufficiently strong crypto guarantees soundness
 - Even in presence of key-cycles
- Where was the original problem? Crypto or argument?
 - Still don't know

- Theorem: Let M and N be expressions and let Π be a KDM-secure encryption scheme. Suppose that $M \cong N$. Then $\llbracket M \rrbracket_{\Phi} \approx \llbracket N \rrbracket_{\Phi}$.
- Sufficiently strong crypto guarantees soundness
 - Even in presence of key-cycles
- Where was the original problem? Crypto or argument?
 - Still don't know
- We are still learning what DY model assumes about underlying crypto
 - There are still surprises out there

Future work

- Same extensions of original AR result
 - Non-malleability?
- Not all proofs use hybrid argument
 - BPW, HC use "simulation argument"
 - Assume no keys are encrypted!
 - Very strong, how to weaken?
- Relationship between KDM-security, circular security, semantic security?
 - Chosen-ciphertext security?
 - Note: may already be known...