The Size of Skeletons

Cryptographic Protocol Authentication and Secrecy Goals are Decidable

Joshua D Guttman F Javier Thayer

The MITRE Corporation http://www.ccs.neu.edu/home/guttman

Thanks to support from: MITRE-Sponsored Research

Goals of this Paper

Show cryptographic protocol

- authentication properties
- secrecy properties

are decidable, if carefully formulated Illustrate method of

- skeletons
- homomorphisms

for protocol analysis

Interest of paper:

- Interplay between logical and algebraic ideas

Main Result

Consider protocol Π suitably presented

There is a

classical quantified first order language \mathcal{L}_{Π}

such that

- Satisfiability for a class of formulas of \mathcal{L}_{Π} is decidable
- Authentication and secrecy goals for Π are expressed in this portion of \mathcal{L}_{Π}

Most properties proved in our previous analyses of particular protocols Π are expressible in \mathcal{L}_{Π}

- Doesn't express recency
- Can recency be added, preserving decidability?

Needham-Schroeder-Lowe

Two roles, presented as strands

Atoms in these roles

K_A, K_B	Public (asymmetric) keys of A, B
N_{1}, N_{2}	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K

Roles are parametrized by these atoms

Example Security Goals, I

Needham-Schroeder-Lowe Authentication

- Suppose a strand $\text{Resp}[A, B, N_1, N_2]$ occurred, where:
 - $\circ K_A^{-1}$ non-originating
 - \circ N₂ originates uniquely, with $N_2 \neq N_1$
- Then a strand $Init[A, B, N_1, N_2]$ occurred

Needham-Schroeder Authentication

- Suppose a strand $\text{Resp}[A, B, N_1, N_2]$ occurred, where:

$$\circ K_A^{-1}$$
 non-originating

- \circ N₂ originates uniquely, with $N_2 \neq N_1$
- Then a strand $Init[A, X, N_1, N_2]$ occurred (for some X)

Origination

Subterms don't count encryption keys

If
$$t = \{ |N_1 \cap N_2 \cap B| \}_{K_A}, N_1 \cap N_2 \sqsubset t$$

but $K_A \not \sqsubset t$

Definition: t_0 originates at n if

- \circ *n* positive
- $\circ t_0 \sqsubset \operatorname{term}(n)$
- $\circ \quad t_0 \not\sqsubset \mathsf{term}(m) \text{ if } m \Rightarrow^+ n$

"t was said on n without having been said or heard earlier" a originates uniquely in S:

– There is just one $n \in S$ s.t. a originates on n

a is non-originating in a set S of nodes:

- If $n \in S$, a does not originate on n

Example Security Goals, II

Needham-Schroeder-Lowe secrecy

- Suppose a strand $\text{Resp}[A, B, N_1, N_2]$ occurred, where:
 - $\circ K_A^{-1}, K_B^{-1}$ non-originating
 - \circ N₂ originates uniquely, with $N_2 \neq N_1$
- Then a strand that receives message N_2 has not occurred

These authentication and secrecy goals expressible in \mathcal{L}_{Π}

- Formula satisfiable if true in some possible execution
- Formulas talk about
 - Unique origination, non-origination, equality
 - Occurrence of certain strands, or non-occurrence
- Formulas use quantifiers over atomic values freely "for some X"

The Languages \mathcal{L}_{Π}

Let Π be a protocol

In total

$$2 + \sum_{r \in \Pi} \text{length}(r)$$

predicates

- Set of roles $r \in \Pi$ (each r is a strand)
 - \circ Atoms mentioned in r are parameters
- Some more detail to add later

 \mathcal{L}_{Π} contains variables, =, \land, \neg, \forall , and predicates

- non(x)
- unique(x)
- $\psi_m^r(x_1, \dots, x_k)$ whenever: $r \in \Pi$, $m \leq \text{length}(r)$, r has k parameters

 $\psi_m^r(x_1,\ldots,x_k)$ means

- at least m steps of r occurred with parameters x_1, \ldots, x_k Claim: satisfiability decidable for formulas of \mathcal{L}_{Π} of form

$$\forall x_1, \ldots, x_j : H \supset C$$

where H quantifier-free and C does not contain non(x), unique(x)

Language Semantics

regular part of a bundle (execution)

An interpretation of \mathcal{L}_{Π} is a pair $(\mathbb{A}\,,\sigma)$ where

- A a realized skeleton (for protocol Π)
- σ is a variable assignment mapping Var(\mathcal{L}_{Π}) to atoms

 $\mathcal{M} = (\mathbbm{A}\,,\sigma)$ satisfies

 $\begin{array}{ll} \operatorname{non}(x) \text{ iff } & \sigma(x) \in \operatorname{non}_{\mathbb{A}} \\ \operatorname{unique}(x) \text{ iff } & \sigma(x) \in \operatorname{unique}_{\mathbb{A}} \\ \psi_m^r(x_1, \dots, x_k) \text{ iff } & \mathbb{A} \text{ contains some } s \text{ of height at least } m \\ & \operatorname{such that } \operatorname{tr}(s) = \operatorname{tr}(r \cdot \alpha) \\ & \operatorname{where } \sigma(x_i) = a_i^r \cdot \alpha \end{array}$

where the parameters of \boldsymbol{r}

are a_1^r, \ldots, a_k^r

Choosing any $\mathcal{M} = (\mathbb{A}, \sigma)$ and formula ψ of \mathcal{L}_{Π} ,

 $\mathcal{M} \models \psi$

is decidable

Repetition not expressed

Suppose \mathbb{A} is a sub-execution of \mathbb{A}' , and

When $n' = s' \downarrow i$ and $n' \in \mathbb{A}' \setminus \mathbb{A}$, there is s with

$$\operatorname{tr}(s) = \operatorname{tr}(s')$$

and \mathbb{A} -height $\geq i$

- A leaves n' out only if an identical $n = s \downarrow i$ stays in A Then for every σ ,

 (\mathbb{A},σ) and (\mathbb{A}',σ)

are elementary equivalent for \mathcal{L}_{Π}

Can we use this to reduce all interpretations to finitely many? Yes, by collapsing large executions to small ones

Terms and Replacement

A replacement is a function α from atoms to atoms where

(1) $\alpha(a)$ must have the same type (key, nonce, etc) as a(2) $\alpha(K^{-1}) = (\alpha(K))^{-1}$

Application of replacement to terms:

$$a \cdot \alpha = \alpha(a)$$

$$(t_0 \hat{t}_1) \cdot \alpha = (t_0 \cdot \alpha) \hat{t}_1 \cdot \alpha)$$

$$(\{|t|\}_K) \cdot \alpha = \{|t \cdot \alpha|\}_{K \cdot \alpha}$$

For pairing and sets, do the obvious:

$$\begin{array}{rcl} \langle x,y\rangle\cdot\alpha &=& \langle x\cdot\alpha,y\cdot\alpha\rangle\\ S\cdot\alpha &=& \{x\cdot\alpha\colon x\in S\} \end{array}$$

If x is an integer, symbol +, -, etc

$$x \cdot \alpha = x$$

Definition of Strand Space

A strand space over the term algebra A is

- a set Σ together with
- a trace function tr: $\Sigma \to (\pm \mathsf{A})^*$ and
- a replacement operator \cdot such that for all $s\in {\bf \Sigma}$

$$\circ \qquad \mathsf{tr}(s \cdot \alpha) = \mathsf{tr}(s) \cdot \alpha$$

$$\circ \qquad s \cdot \alpha = s' \cdot \alpha \text{ implies } s = s'$$

Moreover:

If s a penetrator strand

then $s \cdot \alpha$ is a penetrator strand of the same kind

i.e. penetrator activity invariant under $~~\cdot~\alpha$

Bundles and Replacements

A bundle ${\mathcal B}$ is a causally well-founded graph of strands and message transmission

- Finite acyclic graph

- Closed under strand predecessor
- Every negative node has one incoming msg arrow

Bundles preserved under $\ \cdot \ \alpha$

If \mathcal{B} is a bundle

then $\mathcal{B} \cdot \alpha$ is a bundle

Bundles and Skeletons, I

The skeleton of a bundle $\ensuremath{\mathcal{B}}$

- N: \mathcal{B} 's regular nodes
- $\preceq: \ \ \preceq_{\mathcal{B}} \mathsf{restricted} \mathsf{ to} \mathsf{ N}$
- non: set of non-originating K with K or K^{-1} used in \mathcal{B}
- unique: set of uniquely originating a in \mathcal{B}
- written skeleton(\mathcal{B})
- \mathbb{A} is realized

- If $\mathbb{A} = \text{skeleton}(\mathcal{B})$ for some \mathcal{B}
- Means that $\mathbb A\,$ contains enough regular strands, penetrator can do rest of work

Preskeletons and Skeletons

 $\mathbb{A} = (\mathbb{N}, \leq, \text{non}, \text{unique})$ is a preskeleton if:

- 2. \leq , partial order on N:
- non, set of keys: 3.

1. N, finite set, reg. nodes: $n_1 \in \mathbb{N}$ and $n_0 \Rightarrow^+ n_1$ implies $n_0 \in \mathbb{N}$ $n_0 \Rightarrow + n_1$ implies $n_0 \preceq n_1$ $K \in \text{non does not occur in N, but}$ either K or K^{-1} is used for encryption $a \in$ unique implies a occurs in N

unique, a set of atoms: 4.

A preskeleton \mathbb{A} is a skeleton if in addition:

4'. $a \in$ unique implies a originates at at most one node in N

Language Semantics

An interpretation of \mathcal{L}_{Π} is a pair (\mathbb{A}, σ) where

- \mathbb{A} a realized skeleton (for protocol Π)
- σ is a variable assignment mapping Var(\mathcal{L}_{Π}) to atoms

 $\mathcal{M} = (\mathbb{A}, \sigma)$ satisfies

 $\begin{array}{ll} \operatorname{non}(x) \text{ iff } & \sigma(x) \in \operatorname{non}_{\mathbb{A}} \\ \operatorname{unique}(x) \text{ iff } & \sigma(x) \in \operatorname{unique}_{\mathbb{A}} \\ \psi_m^r(x_1, \dots, x_k) \text{ iff } & \mathbb{A} \text{ contains some } s \text{ of height at least } m \\ & \operatorname{such that } \operatorname{tr}(s) = \operatorname{tr}(r \cdot \alpha) \\ & \operatorname{where } \sigma(x_i) = a_i^r \cdot \alpha \end{array}$

where the parameters of r

are a_1^r, \ldots, a_k^r

Choosing any $\mathcal{M} = (\mathbb{A}, \sigma)$ and formula ψ of \mathcal{L}_{Π} ,

 $\mathcal{M} \models \psi$

is decidable

Satisfaction Preserved

Let $\mathcal{M} = (\mathbb{A}, \sigma)$, $\psi \in \mathcal{L}_{\Pi}$

Suppose α respects origination for \mathbb{A} , and α injective on $\sigma(\mathsf{fv}(\psi))$ Let $\mathcal{M}' = (\mathbb{A} \cdot \alpha, \sigma \circ \alpha)$ Then $\mathcal{M} \models \psi$ if and only if $\mathcal{M}' \models \psi$

 α respects origination for \mathbb{A} ...

 \ldots implies $\mathbb{A} \cdot \alpha$ realized skeleton if \mathbb{A} is

Result shows semantics compatible with algebra

Skeletons and Bundles, II

A skeleton $\mathbbm{A}\,$ describes some of the regular behavior in some set of bundles

- Describes the bundles ${\mathcal B}$ you could get by adding information to ${\mathbb A}$

To get from skeleton $\mathbb A\,$ to bundle $\mathcal B,$ you can

- Add new regular nodes
- Apply a replacement α
- Equate strands
 - When corresponding nodes have same term and direction
- Connect nodes $n_0 \preceq n_1$ via penetrator strands

First three all transform preskeletons to preskeletons

- Suggest notion of homomorphism on preskeletons
- Not a preskeleton any more if we connect nodes with penetrator strands

Homomorphisms on Preskeletons

Let $\mathbb{A}_0, \mathbb{A}_1$ preskeletons, α a replacement, $\phi \colon \mathbb{N}_{\mathbb{A}_0} \to \mathbb{N}_{\mathbb{A}_1}$ $H = [\phi, \alpha]$ is a homomorphism if

1. $\operatorname{term}(\phi(n)) = \operatorname{term}(n) \cdot \alpha$ for all $n \in \mathbb{A}_0$ 1'. $m \Rightarrow \phi(n')$ iff $m = \phi(n)$ where $n \Rightarrow n'$ 2. $n \preceq_{\mathbb{A}_0} m$ implies $\phi(n) \preceq_{\mathbb{A}_1} \phi(m)$ 3. $\operatorname{non}_{\mathbb{A}_0} \cdot \alpha \subset \operatorname{non}_{\mathbb{A}_1}$ 4. $\operatorname{unique}_{\mathbb{A}_0} \cdot \alpha \subset \operatorname{unique}_{\mathbb{A}_1}$

Written $H \colon \mathbb{A}_0 \mapsto \mathbb{A}_1$

If A_1 is a skeleton, and $a \in \text{unique}_{A_0}$ and $\alpha(a) = \alpha(b)$ and $n_0, n_1 \in N_{A_0}$ are points of origination for a, b respectively, then $\phi(n_0) = \phi(n_1)$

Preserving Realizability

A negative node n is realized in \mathbb{A} if n is penetrator-derivable from

 $\{m \in \mathbb{A} : m \preceq_{\mathbb{A}} n \text{ and } m \text{ is positive}\}$

Prop. If n is realized in \mathbb{A} and α respects origination in \mathbb{A} , then $n \cdot \alpha$ is realized in $\mathbb{A} \cdot \alpha$

Let $H = [\phi, \alpha] \colon \mathbb{A} \mapsto \mathbb{A}'$ where α respects origination in \mathbb{A}

If $n \in \mathbb{A}$ is realized in \mathbb{A} , then $\phi(n)$ is realized in \mathbb{A}' If \mathbb{A}' is a skeleton and $\phi(\text{realized}(\mathbb{A})) = \mathbb{A}'$, then \mathbb{A}' is realized

Equating Alike Strands

Suppose s_0, s_1 have heights $h_0 \leq h_1$ resp. in \mathbb{A}' , where $j \leq h_0$ implies

 $\operatorname{term}(s_0 \downarrow j) = \operatorname{term}(s_1 \downarrow j)$

with matching direction

There exist \mathbb{A} , \mathbb{A}'' , an order enrichment $H \colon \mathbb{A} \to \mathbb{A}'$, and a homomorphism $H'' = [\phi, id] \colon \mathbb{A} \to \mathbb{A}''$ such that:

- 1. $\phi(n) = n$ unless *n* lies on s_0
- 2. $\phi(s_0 \downarrow j) = s_1 \downarrow j$ for all j with $1 \le j \le h_0$
- 3. $\phi(n)$ is realized in \mathbb{A}'' if n is realized in \mathbb{A}'

Proof Idea

Protocols

A protocol Π consists of

- 1. A finite set of strands r called its roles
- 2. For each $r \in \Pi$, sets of atoms n_r, u_r giving origination data;
- 3. A number of key function symbols, and for each role r,
 0 or more equations called key constraints

Skeleton of a Protocol

$\mathbbm{A}~$ is a skeleton for Π if

- 1. $s = r \cdot \alpha$ for some $r \in \Pi$, if s in \mathbb{A}
- 2. $n_r \cdot \alpha \subset \operatorname{non}_{\mathbb{A}}$ if $r \cdot \alpha$ in \mathbb{A}
- 3. $u_r \cdot \alpha \subset \operatorname{unique}_{\mathbb{A}}$ if $r \cdot \alpha$ in \mathbb{A}
- Key constraints of A true under some interpretation of the key fn symbols by injective functions

The key constraints of $\mathbb A\,$ are the equations

 $\varphi \cdot \alpha$

such that φ is a key constraint for some role r with $r\cdot \alpha$ in $\mathbb A$

Origination Data

When we add $s=r\cdot \alpha$ to $\mathbb A$, obtaining $\mathbb A\,',$

- $n_r \cdot \alpha \cup \operatorname{non}_{\mathbb{A}} \subset \operatorname{non}_{\mathbb{A}'}$
- $u_r \cdot \alpha \cup \mathsf{unique}_{\mathbb{A}} \subset \mathsf{unique}_{\mathbb{A}'}$

(Consequence of defn "skeleton of protocol Π ") Interesting case:

$$u_r = n_r = \emptyset$$

"Π imposes no origination constraints"

Can still express origination assumptions via \mathcal{L}_{Π}

- More fine-grained assumptions
- More informative conclusions
- Matches past practice

Bounded Skeletons

There is an integer $f(\Pi, k)$ such that when \mathbb{A} contains more than $f(\Pi, k)$ strands but $|\operatorname{non}_{\mathbb{A}} \cup \operatorname{unique}_{\mathbb{A}}| = k$

Then A has a subskeleton A' with fewer strands where - A' is realized if A is - If $s \in A \setminus A'$, there is $s' \in A'$ with \circ tr(s') = tr(s) and \circ A'-height of $s' \ge A$ -height s

Moreover: \mathbb{A} , \mathbb{A}' elementary equivalent for \mathcal{L}_{Π}

Consequence: if k does not grow as we add strands, there's a bound to how many strands to look at

Putting it all together

Let $\psi \in \mathcal{L}_{\Pi}$, $\mathcal{M} = (\mathbb{A}, \sigma)$, $\mathcal{M}' = (\mathbb{A} \cdot \alpha, \sigma \circ \alpha)$ where α respects origination for \mathbb{A} , and α injective on $\sigma(\mathsf{fv}(\psi))$

 $\mathcal{M} \models \psi$ if and only if $\mathcal{M}' \models \psi$

Let $\mathbb{A} = (N, \preceq, \text{non}, \text{unique})$ and $\mathbb{A}' = (N', \preceq', \text{non}, \text{unique})$ with $N \subset N'$ and $\preceq \subset \preceq'$

- Suppose whenever $n' = s' \downarrow i \in \mathbb{N}' \setminus \mathbb{N}$, there is s with \mathbb{A} -height $\geq i$ such that tr(s) = tr(s')
- Then for every σ ,

$$(\mathbb{A},\sigma)$$
 and (\mathbb{A}',σ)

are elementary equivalent for \mathcal{L}_{Π}

If Π imposes no origination constraints, satisfiability decidable for

$$\forall x_1,\ldots,x_j : H \supset C$$

where H quantifier-free and C does not contain non(x), unique(x)

Conclusion

Security goals are decidable

- Explicit about what origination assumptions are needed
- Express authentication, secrecy
- Match past strand space practice
- No recency in \mathcal{L}_{Π}
- Skeletons and homomorphisms useful
 - As heuristic
 - As suggesting proof methods

Skeletons/homomorphisms also help automate protocol analysis

- Subject of next talk

Thanks to Iliano Cervesato and Dusko Pavlovic for an important correction

Respects Origination

A replacement α respects origination in \mathbb{A} just in case:

```
1. for all a, a'

if a \in \operatorname{non}_{\mathbb{A}}

and a \cdot \alpha = a' \cdot \alpha

then a' \in \operatorname{non}_{\mathbb{A}}

and

2. for all a, a'

if a \in \operatorname{unique}_{\mathbb{A}}

and a \cdot \alpha = a' \cdot \alpha

then a = a'
```