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ABSTRACT

This paper presents a new appearance-based place
recognition system for topological localization. The
method uses a panoramic vision system to sense the
environment. Color images are classified in real-time
based on nearest-neighbor learning, image histogram
matching, and a simple voting scheme. The system has
been evaluated with eight cross-sequence tests in four
unmodified environments, three indoors and one
outdoors. In all eight cases, the system successfully
tracked the mobile robot’s position. The system correctly
classified between 87% and 98% of the input color
images. For the remaining images, the system was either
momentarily confused or uncertain, but never classified
an image incorrectly.

1. INTRODUCTION

Localization is a fundamental problem in mobile
robotics. Most mobile robots must be able to locate
themselves in their environment in order to accomplish
their tasks. Since mobile robot localization is a
prerequisite for most applications, research has been very
active in this field [4].

Current localization methods can be classified as
being geometric, topological, or hybrid. Geometric
approaches typically use a two-dimensional grid as a map
representation. They attempt to keep track of the robot’s
exact position with respect to the map’s coordinate
system. Topological approaches use an adjacency graph
as a map representation. They attempt to determine the
node of the graph that corresponds to the robot’s
location. Hybrid methods combine geometric and
topological approaches.

Most of the recent work on mobile robot localization
focuses on geometric localization. In general, these
geometric approaches are based on either map matching
or landmark detection. Most map matching systems rely
on an extended Kalman filter that combines information
from intrinsic sensors with information from extrinsic
sensors to determine the current position [2,9,16]. Good
statistical models of the sensors and their uncertainties
must be provided to the Kalman filter. Situations where

the robot travels over a bump (e.g., a cable lying on the
floor) are difficult to model and can thus lead to
unpredictable results.

Landmark localization systems rely on either
artificial or natural features of the environment.
Artificial landmarks are easier to detect reliably than
natural landmarks. However, artificial landmarks require
modifications of the environment, such that systems
based on natural landmarks are often preferred. Various
features have been used as natural landmarks: corners
[8], doors [3,22], overhead lights [22], air diffusers in
ceilings [1], and distinctive buildings [20]. Because most
of the landmark-based localization systems are tailored
for specific environments, they can rarely be easily
applied to different environments.

Although research in geometric localization has been
very active and has made recent improvements, we are
not aware of any system that works well both indoors and
outdoors. In contrast, this paper presents a novel
topological localization method that performs well in a
variety of man-made indoor and outdoor environments.
Our localization system uses color vision, works in real-
time, and can easily be trained in new environments. The
next section outlines the basic approach of the algorithm
and describes the motivation for the use of a panoramic
color vision system. Section three shows the similarities
between the problems of place recognition and image
retrieval, and describes the multiple advantages of
histograms. Section four explains how nearest-neighbor
learning can be applied to topological localization.
Section five describes in detail the place recognition
algorithm. Section six presents experimental results from
four different environments. Section seven discusses
possible future improvements. Section eight briefly
describes related work in topological localization, and
the paper ends with a conclusion in section nine.

2. TOPOLOGICAL APPROACH

Unlike the majority of current localization research,
our algorithm uses a topological representation of the
environment. In a topological approach, maps are
represented by adjacency graphs. Nodes of the graph
represent locations, while arcs represent the adjacency



relationships between the locations. Figure 1 shows an
example of a topological map for an apartment with eight
rooms. In the current implementation, adjacency maps
are manually created with a map editor. Creating such
maps takes very little time, as no geometric information
is required, i.e., there is no need to measure the
dimensions of the environment. Although the map’s
geometric layout is ignored by the localization system, it
is useful for visualization and debugging.

Figure 1: Adjacency map of an apartment.

A robust localization system requires an extrinsic
sensor that provides rich information in order to allow
the system to reliably distinguish between adjacent
locations. For this reason, we use a passive color vision
camera as our extrinsic sensor. Because many places can
easily be distinguished by their color appearance, we
expect that color images provide sufficient information
without the need for range data from additional sensors
such as stereo, sonars, or a laser rangefinder.

Our vision-based localization system must be trained
before it can be used in an environment. During training,
representative images are captured from the environment
and associated with the corresponding locations. During
operation, the input image is compared to the map’s
reference images. The location whose reference image
best matches the input image is then considered to be the
currently visible location. Therefore, the goal of the
training stage is to assign a set of representative images
to each location. The current training process is
straightforward and consists of two steps. In the first
step, the robot is simply driven through the environment.
During this process, the localization system captures a
sequence of images at a rate of 1 Hz and saves them onto
the harddisk. In the second step, the user labels the
captured images with the names of the corresponding
locations. Due to the sequential nature of the image
sequence and the easy-to-use interface of our sequence
editor, the image labeling process takes only a few
minutes.

The images captured during the training stage need
to be representative of the environment. In order to keep
the number of necessary reference images low, we use an
Omnicam, which provides panoramic images of the
environment [15]. An example image is shown in Figure
2. The most important advantage of the Omnicam system
over a system with a regular lens is that it provides
rotational invariance in the field of view, i.e., the same
area of the environment is captured independent of the
camera’s orientation. Another advantage is the large field
of view, which further reduces the number of images
necessary to represent a location. The large field of view
also makes the system robust to small changes in the
environment.

Figure 2: Example image acquired by Omnicam system.

3. IMAGE RETRIEVAL

The key element of our topological localization
method is the place recognition module. Assuming that
the previously learned set of images is representative of
the locations, the goal of the place recognition module is
to determine the reference image that is most similar in
appearance to the current input image. A similar problem
is faced by researchers in the field of image retrieval,
which has been very active during the last ten years due
to the creation of large image databases [7]. The goal of
an image retrieval system is to find images in the
database that are similar in appearance to an input query.

Due to the similarity of the underlying problem, our
localization approach greatly benefits from existing
image matching techniques developed in the field of
image retrieval. Although the heart of the problem is
similar, the two problems have some interesting
differences. Image retrieval systems need to compare a
query image with the images of an entire database, which
can exceed millions of images. The place recognition
system needs to compare the current image only with
images taken at the currently believed location and its
immediate neighbors. The adjacency relationship usually
limits the number of reference images to less than one
hundred, which results in a fast matching process.



However, while a few bad matches are not a problem in
image retrieval, a single bad match could lead the robot
localization system to become lost. Confident bad
matches must therefore be strictly avoided for the
localization task.

Most image retrieval systems rely on histograms for
the matching process. Histograms have many attractive
features [19]. First, histograms provide a compact
representation of an image, and thus require less memory
space. In our system, a raw input image requires 231
kilobytes, while a single histogram only uses 1 kilobyte
of memory. This reduction of memory requirements also
makes the comparison of two histograms much faster
than the comparison of two raw images. Second, image
histograms are invariant to rotation of the image around
the optical axis, which is especially attractive when
combined with a panoramic vision system. Due to the
rotational invariance, images taken at a certain position
with different camera orientations have almost identical
histograms. Therefore, a single image acquired at a
certain position is representative for all images acquired
with different orientations at the same position. This
property greatly reduces the number of reference images,
and thus further improves the speed of the place
recognition system, because the input image needs to be
compared to fewer reference images. Third, histograms
are not very sensitive to small translations, which further
reduces the number of reference images. In summary, the
combined use of histograms and the Omnicam results in
a system that requires little memory and performs in real-
time.

4. NEAREST-NEIGHBOR LEARNING

Our localization method is based on the concept of
nearest-neighbor learning. In the context of topological
localization, the task of the place recognition module is
to determine the reference image that best matches the
input image. As our algorithm uses several color bands,
the nearest-neighbor algorithm is applied to each color
band separately. The results of the nearest-neighbor
algorithms are then combined with a simple scheme
based on unanimous voting.

Due to the previously described advantages of
histograms over raw images, our nearest-neighbor
algorithm operates in histogram space instead of image
space. The histograms for the reference images are built
off-line, while the histograms for the input image are
built on-line. In our current implementation, the color
images are first transformed into the HLS (hue,
luminance, saturation) and the normalized RGB color
spaces. One-dimensional histograms are then built for
each individual band. To reduce the effects of noise, all
histograms are low-pass filtered with an average filter.

Each image is represented by three one-dimensional
histograms for the HLS color bands. Depending on
which color space performs better in a given
environment, each image is also represented by three
one-dimensional histograms for either the RGB or the
normalized RGB color bands. Each image is thus
represented by six one-dimensional histograms. At the
end of the off-line initialization, a location with n
reference images has n reference histograms for each of
the six color bands.

5. PLACE RECOGNITION

During operation, an image is acquired and then
classified by the place recognition function, which
consists of the following four steps:

1. Build color histograms of the acquired input image.
2. For each color band, determine the best match for

each candidate location.
3. For each color band, determine location vote and

confidence.
4. Classify image based on unanimous voting.

The first step is identical to the off-line initialization
of the reference histograms. It transforms the input image
into six one-dimensional histograms.

In the second step, the histograms are matched to the
reference histograms. Due to the adjacency map, the
search can be limited to a small number of locations.
Only the currently believed location and its immediate
neighbors need to be considered. For each of these
candidate locations and for each of the six color bands,
the algorithm then determines the reference histogram
that best matches the input histogram. In order to
measure how well two histograms match, we need a
histogram similarity or dissimilarity metric. A good
overview of such metrics is given by Rubner et al. [18].

To determine which metric best suits our
application, we have investigated a number of bin-by-bin
measures: L1 distance, L2 distance, histogram
intersection, Jeffrey divergence, and χ2 statistics. We
have also tested a number of cross-bin measures:
quadratic-form distance, match distance, and
Kolmogorov-Smirnov distance. Briefly summarizing our
tests, we consistently obtained the best results with the
Jeffrey divergence, closely followed by the χ2 statistics.
We have thus chosen to use the Jeffrey divergence as our
distance metric. Given two histograms H and K, with hi

and ki denoting the histogram entries, the Jeffrey
divergence is defined as follows:

( ) ∑ 





+

+
+

=
i ii

i
i

ii

i
i kh

k
k

kh

h
hKHd

2
log

2
log, (1)



For each candidate location and each color band, the
distance between the input histogram and the reference
histograms is thus computed using the Jeffrey
divergence. For each candidate location, the minimum
distance is then determined for each band.

In the third step, each color band individually
decides for which candidate location it votes. Each band
simply votes for the candidate location with the smallest
minimum matching distance. Each color band b also
computes a confidence measure cb of its vote. The
confidence measure cb is computed as follows:
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with: dm: minimum matching distance of all
candidate locations.

di: minimum matching distance of all other
candidate locations.

Confidence values range between 0 and 1. The
higher the confidence value, the more confident a band
is. The confidence value is high if a candidate location
matches the input image much better than any other
candidate location. The confidence value is low if the
second best candidate location matches the input image
similarly well as the best candidate location. If no
candidate location matches the input image well, a high
confidence value is unlikely. Thus, if a color band is
unable to reliably classify an input image, its uncertainty
is reflected by a low confidence value.

In the fourth step, the six votes from the color bands
are combined to classify the input image. The
localization system output consists of the image
classification, a confidence value, and a confidence type.
The confidence type can either be confident, uncertain,
or confused. Only confident classifications are used by
the system to keep track of the location.

Each color band b has its own confidence threshold
τb. In order to cast a confident vote, the band’s
confidence value must be above its confidence threshold.
The votes from the confident color bands are then
combined with a simple scheme based on unanimous
voting. There are three possible cases:

i) The confident bands are unanimous and vote for the
same location. In this case, the total confidence
value is computed as defined in (3). If the total
confidence is above the action threshold, then the
system is confident about its classification. If the
confidence value is below the action threshold, then
the system is uncertain. The action threshold is
currently set at 0.1 for all transitions. This parameter

could be set individually for each transition, but so
far this was unnecessary, as we achieved good
results with a global threshold value.
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ii) The confident bands are not unanimous and vote for
different locations. In this case, the classification
status is confused, and the confidence value is equal
to zero. Not surprisingly, confused votes happen
most often near transitions.

iii) None of the bands is sufficiently confident to cast a
vote. In this case, the classification status is
uncertain, and the confidence value is equal to zero.

The higher the number of confident classifications
the better. If there are not enough confident
classifications, the system might miss a transition and
could become lost. The system also becomes lost if an
incorrect confident classification occurs. If the system’s
status is confused or uncertain, then the system does not
classify the input image. For its internal belief, the
system assumes that it is still at the same location as at
the last confident classification.

It is important to note that our current system does
not rely on odometry information and odometry
uncertainty models. While odometry is very useful for
short-distance navigation, we chose not to use odometry
information for the task of localization at this time.
Therefore, errors in odometry do not affect our system at
all.

6. EXPERIMENTAL RESULTS

For experimental verification, we implemented our
passive localization system on an all-terrain Radio Flyer
wagon. The wagon is pulled manually, a process that is
much easier than controlling an actively driven vehicle.
The wagon carries a laptop computer with a Pentium II
processor clocked at 333 MHz, a Hitachi KPD-50 color
CCD camera with an Omnicam lens system, and batteries
to power the camera. The camera is connected to the
laptop with a PCMCIA framegrabber from MRT. The
entire system is shown in Figure 3.

We have used the wagon as an experimental
platform to test our localization system in a variety of
environments. Table 1 summarizes the performance of
our localization system in four different environments,
three indoors and one outdoors. All tests were performed
in unmodified environments. Each environment was
evaluated twice with a cross-validation test. A cross-
validation test is based on two different sequences of
images, acquired at different times in the same



environment. One of the sequences is used as training
data, while the other sequence is used as test data. In all
the tests, the initial location is assumed to be known at
the start. The localization system’s task consists of
classifying the test images, and keeping track of the
vehicle’s position. Although the tests are performed off-
line for a better analysis, the results would be identical in
an on-line test.

Tests #1 and #2 were performed in an apartment
with eight rooms. Tests #3 and #4 were performed on the
first floor of Smith Hall at the Robotics Institute. Tests
#5 and #6 were performed on the second floor of Smith
Hall. Tests #7 and #8 were performed outdoors on the
Carnegie Mellon University campus, on a route leading
from Doherty Hall to the Football Field, a distance of
about 250 meters. The adjacency map for the first two
tests was used as an example in Figure 1, while the
adjacency maps for the other six tests are shown in
Figure 4. The size of a location can vary substantially,
ranging from 1-2 m2 for a small indoor location to more
than 100 m2 for a large outdoor location.

For each test, the voting thresholds for the individual
bands were optimized by setting their values equal to the
confidence values of the highest incorrect votes. The
action threshold was set to 0.1 for all transitions. All tests
used the HLS color space, and either the RGB or the
normalized RGB color space.

Figure 3: Experimental platform.

All eight tests can be classified as being very
successful, as our localization system was able to
continually track the location of the wagon, without ever
missing a transition. The percentages of correct confident
classifications range from 87.5% to 97.7%. Most
importantly, none of the confident classifications were
incorrect. The total number of images that were classified
was 1307. The number of images ranges between 131
and 231 for each of the individual test sequences.

Due to the topological representation where
locations are defined as rooms, our algorithm does not
need a fast sampling rate to keep track of the robot’s
location.  We  expect  that  an  update  rate of about  2 Hz

Test Number #1 #2 #3 #4 #5 #6 #7 #8
Confident Correct 97.7 % 97.7 % 93.3 % 87.5 % 93.8 % 97.4 % 96.4 % 90.7 %
Confident Wrong 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
Uncertain Location 0.8 % 0.0 % 3.4 % 6.5 % 2.5 % 1.7 % 1.4 % 6.0 %
Uncertain Transition 0.0 % 0.0 % 2.2 % 5.4 % 1.2 % 0.0 % 0.7 % 2.7 %
Confused Location 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
Confused Transition 1.5 % 2.3 % 1.1 % 0.5 % 2.5 % 0.9 % 1.4 % 0.7 %
Average Confidence 1.753 2.716 1.149 0.666 1.105 1.528 0.964 1.330

Table 1: Results of cross-validation tests

a) b) c)

Figure 4: Adjacency maps of experiments: a) first floor of Smith Hall, b) second floor of Smith Hall, c) campus route



should be sufficient for most environments. Because our
system applies fast image retrieval methods to rather small
databases, the system easily achieves the required update
rate of 2 Hz. In fact, with the current equipment, the
algorithm needs less than 250 ms to compare an input
image to 100 reference images, thus leaving a good
amount of processing time for other modules.

Our current system is robust to changes that represent
less than a few hundred pixels in an image. The more
image pixels are modified by the change in the
environment, the more affected our system is.

7. FUTURE WORK

Although the achieved results are promising, we have
many ideas of how to further improve the current system.
A straightforward task consists of investigating other
promising color spaces and determining how higher
dimensional histograms perform. In addition to color, we
could also experiment with texture as an attribute.

Our localization system differentiates between
locations based on their appearance. As object appearance
depends heavily on illumination conditions, our system is
very sensitive to changes in illumination. A modified
algorithm that is capable of compensating for varying
illumination would be very beneficial to the system in
many environments. We expect that placing a reference
chart into the camera’s visual field will help us implement
a relatively simple color constancy algorithm.

The ideal system will be capable of creating
topological maps on its own. Automatic generation of
maps would have many advantages. First, such a system
would be very user-friendly. To train the system, it would
only need to be led through the environment once. This
training run could be performed under human control or
by an autonomous exploration system. Second, allowing
the system to define its own locations would permit it to
achieve an even better performance. In the current system,
where locations are defined by the user, an inappropriate
choice can have negative effects on the system’s
performance. Third, automatic map generation would
make it practical for each band to have its own adjacency
map. Because different bands are sensitive to different
features in the environment, it would be optimal to have
individual maps for each band. Because creating
individual maps by hand is not practical, automatic map
generation is a requirement for the use of individual maps.
Based on additional experiments, we believe that
automatic map generation could indeed be feasible. This
would not only make the system extremely user-friendly,
but it would also greatly improve its performance by
allowing the system to define its own locations and to
create individual maps for the different bands.

8. RELATED WORK

The concept of topological maps for mobile robots
was pioneered by Kuipers in 1978 [11]. Since then,
several approaches of topological localization have been
developed. The remainder of this section briefly describes
a number of topological approaches based on how they
define a place and what kind of sensor they use to perform
the critical task of place recognition.

In Kuipers and Byun’s system, a place is a well-
defined position in space that maximizes a certain
criterion in terms of sensor input [12]. Their system makes
no assumptions about the structure of the environment.
However, their system was only evaluated in simulations.

In 1992, Kortenkamp et al. defined the concept of
gateways, places that mark the transition between two
adjacent spaces in the environment [10]. In experiments
with a mobile robot equipped with both sonars and vision,
their system was able to recognize seven out of seven
places. In a similar approach, Fu et al. proposed a system
that detects corridor intersections based on sonar data [6].
However, they only tested their system in simulations.
Kunz et al. developed Inductobeast, which defines places
as intersections and transitions between hallways and open
areas [13]. Inductobeast uses sonars to perform wall and
corridor following, and then builds topological maps from
encoder history. While these gateway approaches
performed well in both simulations and real experiments,
they are all restricted to highly structured and orthogonal
environments.

Mataric’s robot Toto uses sonars and a flux-gate
compass to detect straight walls and corridors, which are
used as landmarks [14]. The regions near these landmarks
define the places of Toto’s purely topological map.
Although Toto is not restricted to orthogonal
environments, it requires a large proportion of straight
walls in its environment.

Courtney and Jain use a hybrid representation of the
environment [5]. They represent the workspace as a set of
grid-based maps interconnected via topological relations.
Their system uses sonars, lateral motion vision, and
infrared sensors to perform recognition of rooms and
doors. To evaluate their system, they collected ten maps
from each room. In leave-one-out validation tests, they
obtained high recognition rates. However, their rate of
misclassifications is not negligible. Moreover, in order to
recognize a room, the system must first create a map of
the room, which is a time-consuming process.

Taylor and Kriegman also use a hybrid representation
of the environment. Local geometric maps are connected
by a global topological map [21]. Each node defines the
visibility region of an artificial landmark. Landmarks
consist of bar-codes placed at a well-defined height.



Similar to the geometric localization methods
described in the introduction, none of these topological
methods claim to perform well both indoors and outdoors.
In order to achieve reliable place recognition in a variety
of environments, we strongly believe that an information-
rich sensor like color vision is necessary. In prior work,
we evaluated the potential of color-based localization with
a vision-based transition detector [17]. Due to the
promising preliminary results, we continued this research
direction. While our previous method was based on a
Naïve Bayes classifier, the current method is based on
nearest-neighbor learning. The main advantage of the
current method is that it does not require a meta-level
training process to adjust individual transition thresholds.

9. CONCLUSION

This paper presented a new method for topological
localization. The system has been tested in four different
environments, indoors as well as outdoors. In all four
environments, the system successfully tracked the mobile
robot's position. The system correctly classified between
87.5% and 97.7% of the input color images. For the
remaining images, the system was either momentarily
confused or uncertain, but never classified an image
incorrectly.
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