
Lecture Notes on
Optimizations of Register Allocation

15-411: Compiler Design
Frank Pfenning, Rob Simmons, and Jan Hoffmann

Lecture 18
October 26, 2017

1 Introduction

In this lecture we’ll look way back at the lecture on register allocation, and consider
the ways in which register allocation can be optimized to improve program perfor-
mance. The most important operation we’ll consider is register coalescing, which
gets rid of register-register moves when doing doesn’t lead to spilling more temps.

One of the advantages of Pereira and Palsberg’s chordal graph coloring algo-
rithm [PP05] is that it lends itself to a register coalescing approach that is inde-
pendent of the actual register allocation process. In contrast, register allocation
algorithms like the one covered in the textbook [App98, Chapter 11] tend to tightly
integrate register allocation and register spilling, making both more complicated.
Recall that this process has five steps, only four of which were considered in our
initial presentation:

1. Build the interference graph from the liveness information.

2. Order the nodes using maximum cardinality search.

3. Color the graph greedily according to the elimination ordering.

4. Spill if more colors are needed than registers available.

5. Coalesce non-interfering move-related nodes greedily.

2 Register Allocation Heuristics

Pereira and Palsberg’s algorithm for register allocation is notable in that it does not
tell us which registers to spill in step 4, it only tells us how many registers we will
need to spill.

LECTURE NOTES OCTOBER 26, 2017



Optimizations of Register Allocation L18.2

Pereira and Palsberg suggest two heuristics for deciding which colors should
be spilled and which colors should be mapped to registers: (i) spill the least-used
color, and (ii) spill the highest color assigned by the greedy algorithm. The idea
behind (i) is that colors that are used for fewer nodes will result in the spilling of
fewer temps. Strategy (ii) is easier to implement and slightly more efficient. The
idea is that (ii) is an approximation of (i). To understand why, recall how greedy
graph coloring works: We successful select uncolored nodes and color them with
the lowest color that is not used by its neighbors. As a result, there is a tendency to
use lower colors more often.

For programs with loops and nested loops, it may also be significant where in
the programs the variables or certain colors are used: keeping variables used fre-
quently in inner loops in registers may be crucial for certain programs. To take
this into account when using strategy (i), you can for instance introduce a weight
for each node/temp that depends on the nesting depth of the loops in which the
respective temp is used.

It can also be advantageous to add heuristics to step 2 of Pereira and Palsberg’s
algorithm, maximum cardinality search. This is important if you decide to im-
plement strategy (ii) since nodes that are picked earlier tend to have lower colors.
In practice, this algorithm encounters many “ties” where multiple different nodes
could be chosen as the next node. If the algorithm prefers to break ties by select-
ing more frequently used temps (or temps used inside of more nested loops), then
those temps will be considered earlier by the greedy graph coloring algorithm and
potentially assigned lower-numbered colors.

3 Register Coalescing

The most important optimization related to register allocation is eliminating register-
to-register moves with register coalescing. Algorithms for register coalescing are
usually tightly integrated with register allocation. In contrast, Pereira and Palsberg
describe a relatively straightforward method that is performed entirely after graph
coloring called greedy coalescing.

Greedy coalescing is based on two simple observations:

1. If we have a move u ← u, it won’t change the meaning of the program if we
delete it.

2. If two temps do not have an interference edge between them, then the two
different temps could both be renamed to be the same temp without changing
the meaning of the program. (This is simply what it means for two temps to
not interfere!)

Therefore, if t and s do not interfere, then we can always eliminate the move
t ← s by creating a new temp u, replacing both t and s with u everywhere in the

LECTURE NOTES OCTOBER 26, 2017



Optimizations of Register Allocation L18.3

program, and eliminating the move.
We wouldn’t want to do this before graph coloring, because it tends to make

a chordal graph non-chordal and it also tends to increase the number of colors
needed to color the graph. But with a little bit of care, we can coalesce registers t
and s for some moves t← s after we have colored the interference graph but before
we have rewritten the program to replace temps with registers. The algorithm is as
follows:

1. Consider each move between variables t ← s occurring in the program in
turn.

2. If there is an edge between t and s, that is, they interfere, they cannot be
coalesced.

3. Otherwise, if there is a color c ≤ cmax which is not used in the neighborhoods
of t and s, i.e., c 6∈ N(t) ∪N(s), then the variables t and s are coalesced into a
single new variable u with color c:

(a) Create a new node u with color c and create edges from u to all vertices
in N(t) ∪N(s).

(b) Remove t and s from the graph.

(c) Replace t and s with u in the program.

The color cmax is the maximal color that has been used in the coloring of the orig-
inal graph. Because of the tested condition, the resulting graph is still K-colored,
where K is the number of available registers. Of course, we also need to eventually
rewrite the program appropriately by replacing both t and s with u everywhere so
that the program remains in correspondence with the graph.

The requirement for coalescing s and t in the algorithm is that there exists a
c 6∈ N(t) ∪ N(s) with c ≤ cmax. However, you should consider some variations
of the requirement. It would be for instance still be beneficial to coalesce if c is
bigger than cmax in case cmax is small than the number of available registers. If the
graph was K colored before coalescing s and t it will be K + 1 colored afterwords.
However, this does not hamper efficiency since we have K + 1 registers. On the
other side, if we know already that all colors c 6∈ N(t) ∪N(s) correspond to temps
that will be spilled then coalescing might not make sense; particularly if s and t
will be assigned to registers. This situation can arise when using strategy (ii) for
spilling the highest colors.

It’s important to realize that this is not an optimal register coalescing algorithm,
in that it won’t necessarily remove the maximum number of moves. Optimal reg-
ister allocation can be done using a reduction to integer linear programming, but
this would be too slow.

Let’s look at an example, considering the interference graph below, which can
be colored with three colors as follows:

LECTURE NOTES OCTOBER 26, 2017



Optimizations of Register Allocation L18.4

0 2 0 1 0

x4 x0 x1 x5 x6

x2 x3

1 2

We can always coalesce a move between two registers of the same color. For
instance, we can coalesce a move x0 ← x3 by creating a new temp y with the same
color 2 . We would then want to substitute y for x1 and x3 everywhere in the
program. This new temp will have all the neighbors that x0 had (x1, x2, and x3) as
well as all the neighbors that x3 had (x1 and x2).

0 0 1 0

x4 x1 x5 x6

x2 y

1 2

Of course, coalescing two temps that are already the same color isn’t the interest-
ing case. If that’s all we wanted to do, we should have just rewritten the program
completely and eliminated obviously redundant self-moves from the register asso-
ciated with 2 to itself.

As a more interesting example, consider the move y ← x5 in our rewritten
program. (Before rewriting, this would have been either x0 ← x5 or x3 ← x5.)
We can eliminate that move by replacing both y and x5 with z everywhere in our
program. The register y has neighbors with both the color 0 and the color 1 , and
x5 has only neighbors with the color 0 . We will give z the color 2 , the lowest
color not in the neighborhoods of y and x5.

0 0 0

x4 x1 x6

x2 z

1 2

To demonstrate a bit about why doing optimal register coalescing is not straight-
forward, consider what would happen if the original program contained the move
x3 ← x4. In our new program, this would have been rewritten to z ← x4, and

LECTURE NOTES OCTOBER 26, 2017



Optimizations of Register Allocation L18.5

because there is an interference edge between z and x4, this move cannot be elimi-
nated.

In the original graph, however, we could have eliminated the move x3 ← x4 by
coalescing x3 and x4 into a new temp w. However, because x4 in the original graph
has neighbors colored 1 and 2 , and because x3 in the original graph has nodes
colored 0 and 1 , we can only color our new temp w with a color that isn’t present
in the original graph.

2 0 1 0

x0 x1 x5 x6

w x2

3 1

Would we want to perform this step? Almost certainly: even though we’re
increasing the number of colors needed to color the graph, we have at least 3 caller-
save registers available, and it’s always worthwhile to use those if possible. In the
opposite direction, we might wish to avoid coalescing registers if one of the temps
had a low color that would be assigned to a temp and the other had a high color
that would be assigned to a stack location.

4 Splitting Live Ranges

Another popular register allocation optimization is splitting live ranges. This op-
timization can be easily integrated in some register allocation algorithms such as
linear scan but it is not easy to find good heuristics that work for our chordal graph
coloring approach.

To split the live range of a temp t we pick a line in the live range of t and insert
a new move instruction t′ ← t. We then rename all the occurrences of t that are
reached by the new definition to t′. Of course, this is only sound if the new move
instruction is on a path from all definitions of t that reach the replaced occurrences
(where readability is defined as in the reaching definitions analysis). This can for
example be ensured by splitting live ranges only at the beginning of a basic block.

In some sense, splitting live ranges is the complementary optimization to reg-
ister coalescing. The idea of coalescing is to remove move instructions at the cost
of making the interference graph more dense. The idea of splitting live ranges is
to make the interference graph more sparse at the cost of introducing additional
move instructions. The rational is that a move instruction is a low price to pay if
we can avoid to spill a temp since spilling could easily introduce a large number of
move instructions that involve expansive memory accesses.

How splitting live ranges works is best explained by example. Consider the
following code snipped.

LECTURE NOTES OCTOBER 26, 2017



Optimizations of Register Allocation L18.6

live variables
. . .
x← y y, u, v
n← u+ v x, u, v
i← n x, n

l1 : if (i ≤ 0) then done else l2 x, i
l2 : i← i− 1 x, i

x← x ∗ x x, i
goto l1 x, i

done : a← x+ 8128 x
: b← a+ a x, a

return x ∗ b x, b

The code is a bit contrived and it is not important what it computes. The crucial
point is that the temp x is live throughout the whole snipped. As a result, it inter-
feres with almost all other temps in the code: we haven edge in the interference
graph between x and u, v, n, i, a, b. Assume that there are additional constraints so
that greedy graph coloring leads to the following coloring.

u 7→ 2
v 7→ 0
n 7→ 3
i 7→ 1
a 7→ 2
b 7→ 3

Then x gets assigned color 4 and we assume that this leads to the spilling of x
because we only have 4 registers that we use for the lowest colors. This is sub-
optimal because it means we will have expensive memory operations inside the
loop. So we decide to split the live range of x right before the loop by inserting a

LECTURE NOTES OCTOBER 26, 2017



Optimizations of Register Allocation L18.7

move instruction x′ ← x.

live variables
. . .
x← y y, u, v
n← u+ v x, u, v
i← n x, n

split : x′ ← x x, i
l1 : if (i ≤ 0) then done else l2 x′, i
l2 : i← i− 1 x′, i

x′ ← x′ ∗ x′ x′, i
goto l1 x′, i

done : a← x+ 8128 x′

: b← a+ a x′, a
return x′ ∗ b x′, b

Now, x only interferes with i,n,u, and v. The new temp x′ interferes with i,a,
and b. Assume that the other temps are still colored as before. Then we can color
x with color 1 and x′ with color 0. In this way, we avoided the spilling of x at the
cost of one additional move.

While the greedy coalescing algorithm from the previous section is a good
heuristic for deciding whether we should eliminate a move, we do not have good
heuristic for splitting live ranges. One problem is that splitting live ranges has to
happen before the graph coloring. However, we cannot know if the splitting will
indeed lead to a better coloring. It is for instance not a good idea to aggressively
split live ranges of all temps that appear in a loop body before every loop and to
hope that coalescing will remove unneeded moves. This will lead to quite ineffi-
cient code in practice. Instead, we recommend to use splitting only in rare cases or
not at all since it is difficult to integrate with chordal graph coloring.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. Register alloca-
tion via coloring of chordal graphs. In K.Yi, editor, Proceedings of the
Third Asian Symposium on Programming Languages and Systems (APLAS’05),
pages 315–329, Tsukuba, Japan, November 2005. Springer LNCS 3780.

LECTURE NOTES OCTOBER 26, 2017


	Introduction
	Register Allocation Heuristics
	Register Coalescing
	Splitting Live Ranges

