
15-411: Compiler Design Fall 2018

Recitation 5: Calling Conventions Solutions 5 October

The L3 language adds support for function calls, type de�nitions, and header �les with C interoperability.
In this recitation, we'll discuss some of the implications of adding these features and how your compiler
should deal with them.

Caller- and Callee-Saved Registers

In Lab 3, your compiler's code-generation and register allo-
cation phases will need to distinguish between callee-saved

and caller-saved registers:

� The values stored in callee-saved registers must
be preserved across function calls. This means that
your function must save and restore any callee-saved
registers that it modi�es.

� The values stored in caller-saved registers may be
modi�ed by any function call, so your compiler can-
not assume that they will retain their values after
calling a function. If you need those values to be
preserved, you must save and restore them before
and after the function call.

In your register allocation, you will probably want to con-
sider the di�erences between these two types of registers in
order to reduce the number of save and restore instructions
you must add. In lecture on Tuesday, you'll see a relatively
simple way of dealing with most of these issues.

Checkpoint 0

One team's compiler made some bad decisions about where to store values, and also forgot to save and
restore registers! Add the necessary save and restore instructions to the following assembly function.

_c0_foo:

mov $15, %ebx

mov $411, %r12d

mul $100, %ebx

add %r12d, %ebx

mov %ebx, %edi

mov $2, %esi

call _c0_bar

mov %edi, %eax

div %esi, %eax

ret

Solution: NOTE: The solution below uses push and pop instructions, but it might be easier to implement
the save/restore operations by moving %rsp in practice.

_c0_foo:

push %rbx

push %r12

mov $15, %ebx

mov $411, %r12d

mul $100, %ebx

add %r12d, %ebx

mov %ebx, %edi

mov $2, %esi

push %rdi

push %rsi

call _c0_bar

pop %rsi

pop %rdi

mov %edi, %eax

div %esi, %eax

pop %r12

pop %rbx

ret

Checkpoint 1

If di�erent choices were made during register allocation, some of the save and restore operations that you
just added would not have been necessary. Modify the above function so that it has the same behavior,
but uses less save and restore operations.

Solution:

_c0_foo:

push %rbx

push %r12

mov $15, %ebx

mov $411, %esi # we don't need 411 after the call, so store it in a caller-saved reg

mul $100, %ebx

add %esi, %ebx

mov %ebx, %edi

mov $2, %r12d # we need 2 after the call, so store it in a callee-saved reg

mov %r12d, %esi

call _c0_bar

mov %ebx, %eax

div %r12d, %eax

pop %r12

pop %rbx

ret

Tracing Function Calls in x86-64

In Lab 3, your compiler must conform to the standard C calling conventions for x86-64. As a reminder,
this means that:

� The �rst six arguments to a function should be stored in %rdi, %rsi, %rdx, %rcx, %r8, and %r9

(respectively).

� The remaining arguments should be placed on the stack. The seventh argument should be stored
at the address %rsp, the eighth at %rsp + 8, etc.

� The return value of a function should be stored in %rax.

� The use of %rbp as a base pointer is not required (but you may �nd that using it simpli�es your
compiler's logic signi�cantly). LLVM uses the base pointer, but GCC does not.

Another interesting observation: unlike in C, every function in C0 (and thus in L3) has a �xed stack
size that can be computed at compile time. This observation allows you to make your compiler's stack-
handling much simpler than if you were unable to determine the stack size beforehand.

Checkpoint 2

Draw a stack diagram for the following L3 program at the point when execution reaches line 4. Assume
that %rbp is being used as a base pointer.

1 int f(int we, int dont, int care, int about, int these, int args, int a, int b) {
2 // assume that x is spilled on the stack
3 int x = a + b;
4 return 2 * x;
5 }
6

7 int main() {
8 return f(0,0,0,0,0,0,3,5);
9 }

Solution:

Value Pointers

Return address in _main()

Previous %rbp

b; Arg. 8 of f()

a; Arg. 7 of f()

Return address in _c0_main()

Previous %rbp ← %rbp

x ← %rsp

Checkpoint 3

Using your stack diagram, convert the program to x86-64 assembly following the standard calling con-
ventions. Remember to use the 64-bit and 32-bit versions of the registers appropriately!

Solution:

_c0_f:

push %rbp

movq %rsp, %rbp

subq $8, %rsp

movl 24(%rbp), %eax

addl 16(%rbp), %eax

movl %eax, (%rsp)

movl (%rsp), %eax

imull $2, %eax

addq $8, %rsp

pop %rbp

ret

_c0_main:

push %rbp

movq %rsp, %rbp

subq $16, %rsp

movl $0, %edi

movl $0, %esi

movl $0, %edx

movl $0, %ecx

movl $0, %r8d

movl $0, %r9d

movl $3, (%rsp)

movl $5, 8(%rsp)

call _c0_f

addq $16, %rsp

pop %rbp

ret

Static Single Assignment Form

Recall the Fibonacci sequence:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 n > 1

Check out this lil program that computes the nth Fibonacci number:

int fib(int n) {

if (n == 0) return 0;

int a = 0;

int b = 1;

int i = 1;

while (i < n) {

int c = b;

b = a + b;

a = c;

i++;

}

return b;

}

Checkpoint 4

Translate this program into abstract assembly, organized as basic blocks with parameterized labels.

Solution:

fib(n):

if (n == 0)

then done1()

else pre_loop(n)

done1():

return 0

pre_loop(n):

a <- 0

b <- 1

i <- 1

goto loop(n, a, b, i)

loop(n, a, b, i):

if (i < n)

then body(n, a, b, i)

else done2(b)

body(n, a, b, i):

c <- b

b <- a + b

a <- c

i <- i + 1

goto loop(n, a, b, i)

done2(b):

return b

Checkpoint 5

Use generation counters to convert this basic block assembly into SSA.

Solution:

fib(n0):

if (n0 == 0)

then done1()

else pre_loop(n0)

done1():

return 0

pre_loop(n1):

a0 <- 0

b0 <- 1

i0 <- 1

goto loop(n1, a0, b0, i0)

loop(n2, a1, b1, i1):

if (i1 < n2)

then body(n2, a1, b1, i1)

else done2(b1)

body(n3, a2, b2, i2):

c0 <- b2

b3 <- a2 + b2

a3 <- c0

i3 <- i2 + 1

goto loop(n3, a3, b3, i3)

done2(b4):

return b4

Checkpoint 6

Minimize the SSA program.

Solution:

fib(n0):

if (n0 == 0)

then done1()

else pre_loop()

done1():

return 0

pre_loop():

a0 <- 0

b0 <- 1

i0 <- 1

goto loop(a0, b0, i0)

loop(a1, b1, i1):

if (i1 < n0)

then body(a1, b1, i1)

else done2()

body(a2, b2, i2):

c0 <- b2

b3 <- a2 + b2

a3 <- c0

i3 <- i2 + 1

goto loop(a3, b3, i3)

done2():

return b1

Checkpoint 7

Convert the minimized SSA program into assembly without label parameters.

Solution:

fib(n0):

if (n0 == 0)

then done1

else pre_loop

done1:

return 0

pre_loop:

a0 <- 0

b0 <- 1

i0 <- 1

a1 <- a0

b1 <- b0

i1 <- i0

goto loop

loop:

if (i1 < n0)

then pre_body

else done2

pre_body:

a2 <- a1

b2 <- b1

i2 <- i1

goto body

body:

c0 <- b2

b3 <- a2 + b2

a3 <- c0

i3 <- i2 + 1

a1 <- a3

b1 <- b3

i1 <- i3

goto loop

done2:

return b1

Checkpoint 8

AAAA Yikes! What's a compiler optimization we could've applied to the program to make this less sad?

Solution: Copy propagation

Header Files in L3

Unlike in C, header �les in L3 (and above) are only used to declare types and external functions. If a
function is declared in a header �le, then it may not be de�ned in the program � it is declared as external.
External functions are de�ned in C source �les, which are linked together with the assembly produced by
your compiler.

