
Page 1 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

The Junior Woodchuck 
Manual  

of 
Processing Programming  

for  
Android Devices 

The Image  The Code 

 

void setup( )  
{ 
   s ize( 400, 600 );  
   background( 0, 0 ,  200 );    // blue 
  f i ll( 200, 0, 0  ) ;                                  //red 
} 
 
void draw( )  
{ 
     el lipse( mouseX,     mouseY,  
                               mouseX/2, mouseY*2 );    
} 
 

 

Page 2 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

Chapter 2 
Getting Lost… 

The Image  The Code 

 

void setup( )  
{ 
   s ize( 400, 600 );  
   smooth( );  
   background( 200, 200 ,  0  ) ;  
   f i ll( 0,  200, 0 );  
} 
 
void draw( )  
{ 
     rect( mouseX,   mouseY, 
                       (mouseX –  mouseY), 
                           (mouseX + mouseY) /  10 );  
} 
 

 
One way to have some fun programming is to get sorta’ lost and then find 
our way out.   
 
Sometimes it is better to try stuff and then figure out how it really works.   
In this chapter, you are going to try some stuff by drawing things and 
coloring them. 
 
So… let’s get started! 

Page 3 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

Section 1 
 
Where are we ??? 
 
 

The Image  The Code 

 

rect(20, 30, 60, 30);

Page 4 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

 

Find the Processing Icon or the Processing program on
your computer and open it.

Your background will look different from the image on
the right but the P will be the same.

When Processing is open, you will see an empty
window on your screen. This is where you will write
your programs. This is called the “IDE”.

The images shown here were done on a Macintosh. A
windows computer may look a little different/

There is a small black triangle in a dark gray bar the
upper left corner of the IDE. This is the “run” button
– find it and click it.

You should another window with the word “sketch”
and some other stuff in the title bar.

You have just run your first Processing program. It
does not do much – in fact, it does not do anything
but it is a working program.

If you want the program to actually do something
(like the image on the first page), you have to write a
program or “write some code” (like the code on the
first page).

It is not difficult, but there are a lot of rules that
you have to follow. We will talk about some of them
later but, first, let’s write some code and draw
something in the window. Then you can draw what
you want to draw without interference from the
teacher.

Programming languages like Processing use “functions”
as the building blocks for writing programs. Each
function does a specific job.

Page 5 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

JARGON ALERT
JARGON ALERT

We will begin by drawing a rectangle (or box) on
the window.

Type this code into the IDE window exactly as it is
shown below.

 rect(20, 30, 60, 30);

and click the “run” button.

Hopefully, you will see this. If you do, you have just
written your first Processing program and run your
second Processing program. Try changing some of the
numbers. Keep them smaller than 100.

OK – how did your teacher know how to do this. He
did not wake up this morning and figure it out. He
used some information that Processing gives us to find
out how to draw the rectangle.

This information on a web page called the “API”.
There will be tons of these three letter abbreviations.
You can ask what they stand for and your teacher
will tell you if he knows (he may make up some words
if he doesn’t). The important thing is not knowing
what words they replace but what the letters mean.

You can go to the first page of Processing’s API using
this link:
 http://www.processing.org/reference/index.html

This link will take you to the first page that has a
list of all of the functions that Processing has and
that you can use in your programs. The next page
shows you part of this page:

Page 6 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

There are almost three hundred functions in
Processing. You will use only a few of these in the
course. If you have time, you can play with any of
them. Some of them are easy to use and others are a
bit complicated but you should be able to figure out
how to use them.

In the middle column is a set of function named 2D
Primitives. The 2D part means two dimensions: width
and height. The primitives means that these are used
a the building blocks of more complicated drawings
and art.

Let’s look at this list a bit closer:

Page 7 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

If you know what a radian is, the arc() function
might be fun to tinker with. We will ignore it for a
while.

These functions can be used to draw shapes in the
window.

How can we tell that these are functions?

In Processing, functions end with parentheses (). The
parentheses can be empty or have “stuff” inside them
but there are always parentheses (remember – lots of
rules…).

Since you used the rect() function to write your first
program:
 rect(20, 30, 60, 30);

Click on the word rect() in the API and see what
Processing tells us about the rect() function.

Page 8 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

JARGON ALERT
JARGON ALERT

More
JARGON ALERT

This is part of what Processing tells us about the
rect() function. It tells us what the function does
and what “stuff” we have to put into the parentheses
if we want to use the function.

Remember those “rules” we have to follow. They are
called “syntax” rules. Look for the line marked:
syntax.

 Syntax rect(x, y, width, height)

This tells us that if we want to draw a rectangle, we
have to provide four sets of information: the x and y
location of the rectangle and the width and height of
the rectangle.

If you are not sure what the x and y location of the
rectangle is, look below the syntax line and the API
will tell you what x and y are:

Parameters
x int or float: x-coordinate of the
 upper-left corner
y int or float: y-coordinate of the
 upper-left corner
width int or float: width of the rectangle
height int or float: height of the rectangle

The stuff in the parentheses can be called the
parameters or the arguments. Your teacher usually
uses the work arguments. You can use either.

The x and y coordinate s of the rectangle are called
the rectangle’s anchor points. This is the x and y
point on the window that anchors the rectangle.

WAIT A MINUTE… We are using x and y but what do
they really represent and where are they?

Page 9 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

The upper left corner is the (0, 0) point of the
window.

x refers to places that are sideways or across, or
horizontally located in the window.

y refers to places that are up and down or vertically
located in the window.

If we use an x value and a y value, we can tell
Processing exactly where to put something in the
window.

The unit of measure or counting is called the pixel. A
pixel is the smallest dot you can draw and see on the
screen. In the old days, there were about 50 pixels
in an inch but today there is no rule. You have to
experiment with your computer to see what looks
good.

This window measures 100 pixels across (x direction)
and 100 pixels down (y direction);

Why 100? That is what we call the default size

Page 10 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

JARGON ALERT
JARGON ALERT

The word default means that this is what Processing
uses if we do not tell it to use something else.

Let’s go back to your first program and look at the
defaults that Processing uses.

You wrote this code:
 rect(20, 30, 60, 30);
which produced this drawing:

The entire window except for the part covered by the
rectangle is a gray – this is the default background
color.

The rectangle is filled with white – this is the default
fill color.

The rectangle is outlined with a black line. This line
is called the stroke and the strokeColor is black.

Using functions in the API you can alter the
background color, the fill color, the stroke color and
the width of the stroke line.

You can even turn off the fill color and the stroke.
We will look at color in Section 2 of this chapter.

For now let’s go back to your code:
 rect(20, 30, 60, 30);
The numbers in the parentheses are the parameters or
arguments. Earlier we looked at the API to find out
what those numbers mean :

Syntax rect(x, y, width, height)

and we read further to learn this:
Parameters
x int or float: x-coordinate of the
 upper-left corner
y int or float: y-coordinate of the
 upper-left corner
width int or float: width of the rectangle
height int or float: height of the rectangle

Page 11 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

So let’s translate all of this to our drawing:

rect(20, 30, 60, 30);

- The first argument tells Processing to locate the x
point 20 pixels from the left edge.

- The second argument tells Processing to locate the
y point 30 pixels down from the top edge.

- The third argument tells Processing to draw the
rectangle 60 pixels wide.

- The fourth and last argument tells Processing to
draw the rectangle 30 pixels high.

If you want to draw in a bigger window, make this
the first line in your program BEFORE you draw
anything:
 size(400, 400);
 rect(20, 30, 60, 30);

size() must always be first.

If you want to know how size() works. Look it up in
the API.

Spend a few minutes drawing the other shapes to get
familiar with how the work and how big a pixel is.
The more you tinker now, the better it will be later.

Here are some things you should try to find out as
you tinker:
 - What is the anchor point (x, y) for the ellipse?
 - How do you draw a circle?
 - What are the punctuation rules you must follow to
 get your program to work?
  Draw this picture.

Page 12 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

Section 2 
 
Who brought the map??? 
 
 

The Image  The Code 

 background(0, 255, 0); // green
 stroke(255, 0, 0); // red
 strokeWeight(2);

 fill(0, 0, 255); // blue
 rect(20, 20, 60, 60);

 fill(255, 255, 0); // yellow
 triangle(50, 30, 30, 70, 70, 70);

 fill(0, 255, 0); // green
 ellipse(50, 57, 20, 20);

Page 13 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

There was a time in the far dim past when televisions
were black and white. Eventually someone figured out
how to use color on the television and things were
very different.

The same was true for computer screens. There was
only black and white – not even gray. In fact, gray
was a major improvement for computer programmers.

Then a smart programmer somewhere figured out how
to put color into programs and programming became
much more fun (funner is not a word… sigh…).

Processing allows us to color what we draw on the
screen.

On the left is part of the API that we can use for
adding color to our programs. Pretend that the
function colorMode() is not there for now.

Each of these functions allows us to color or remove
color from the shapes we draw on the window.

Before we look at the functions, let’s look at color
first.

We will work with colors in the same way we mix
paint. Processing gives us three basic colors:
 - red
 - green
 - blue
When you see the letters, RGB or rgb, it is usually
referring to red, green, and blue.

We mix different amounts of these three colors to
make the color we want to use. Processing always
mixes the colors in the order:
 red, green, blue

One way to think about how this works is to pretend
you are in a room with three light bulbs that are

Page 14 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

connected to dimmers that let you vary the amount of
light coming from each bulb:
 - one bulb is red
 - one bulb is green
 - one bulb is blue
When the three bulbs are turned off, the room is
dark or black.
When the three bulbs are turned on all the way, the
room is white.

By changing the settings of the dimmers, you can
create different colors of the room lighting.

In Processing a color is completely off when it is set
to zero – makes sense. When a color is completely
on, it setting is 255 -- ???? Save this for later… much
later…

If you want to set color to red, you would type:
 255, 0, 0
which tells Processing you want full on red and zero
green and zero blue.

If you want to set the color to blue, you would type:
 0, 0, 255
which tells Processing you want zero red, zero green,
and full on blue.

We use these numbers as arguments when we use the
functions to set the color.

For example, in the image at the start of this section,
the background color of the window is green. This
was colored using the background function like this:
 background(0, 255, 0);
This told Processing to set the background color to
zero red, full on green, and zero blue.

You should go to the API and see how to use the
other functions (except colorMode()) in your code.

Page 15 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

You may be thinking,
 “How do I know what numbers to use for the color
 amounts?”

There are several answers:
 - One is to just guess and take whatever the
 numbers make
 - Another is to experiment and keep careful notes
 like the mad scientists in the old monster
 movies.

- A third way is to use Processing.

Below is the menu bar that Processing gives us:

There is a Tools menu item. Under Tools is a Color Selector option. If
you choose this, you will see this:

You can use this to find the color you want. You move the line in the
multicolored bar to the general area of the color you want and then click
in the window on the actual color you are looking for (the little box) and
Processing will tell you the RGB values to use.

Page 16 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

The HSB values are used in a different color mode and the stuff in the
lower right corner also represents the color. For now, you want to use
the RGB values.

One function you may want to use is not listed in the color functions.
This is the strokeWeight() function.

This sets the width of the stroke or the line that is drawn around the
shapes you draw. The argument is the width of the line in pixels.

What about Black, White, and Gray
We can set a color to black (0), white (255), or any shade between
black and white if we use just one number. Processing understands that
if it sees just a single number when we are telling it what color we want
to use, that we want black, white, or some shade of gray.

Twins, Triplets, Quadruplets, Octuplets . . .
What???

You know what we mean when we say two brothers or sisters are twins.
Processing has sorta’ the same thing… Let’s look at the API for the fill
function ():

There are eight fill() functions in this list – sorta’ like eight siblings or
octuplets.

That’s right -- there are eight different ways to use fill() in our code.
Each of these functions sets the color of the inside of the shapes we
draw. So they all do the same thing. The difference is how we tell the
fill() function what color we want to use.

Page 17 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

Processing can figure out what color we want by looking at the
arguments we use. If we put a single number between 0 and 255 in the
parentheses, it knows we want black, white or some shade of gray.

If we use three numbers between 0 and 255, it knows we want an RGB
color.

We will talk about the other six siblings of fill in the list later. We
have more than enough to use right now.

You need to do some tinkering with code and figure out how this stuff
works. Here are some things you should try to figure out as you tinker.

- What is drawn first and what is drawn last in my program?
- What happens to any “old” shapes I have if I change the fill color?
- If I set the fill color to green, and draw a bunch of shapes, how

many will be green?
- Is the order that I draw the shapes important?
- If I want to draw a small shape inside a big shape, what should I

draw first?

Here is picture your teacher drew. Surly you can do much better...

Page 18 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

Your Assignment for next time:
- Draw a Picture.
- Explore the functions in the API. Work with the functions in the 2D
Primitives section under Shape and the functions in the Setting section
under Color.
- Bring your code with you.

One last thing (teachers never let you go…)

Save your program first – this is very important.

Then, put the following line of code at the very end of your program.
This must be the LAST line of code:

 saveFrame("day2.jpg");

Save your program again.

Now run your program.

The saveFrame() function actually takes a picture of your program’s
graphics window or frame and saves it in the folder that has your
program file. The name of the picture will be day2.jpg.

You can take this picture and print it, mail it to someone as an
attachment, or put it on your face book page.

If you print it, remember that it has a lot of color and could use up a lot
of ink. Check with the folks at home before you print this.

We will electronically collect your prints next time. We do NOT want
paper.

See you in a week…

Page 19 of 19 

Junior Woodchuck Manuel for Processing Programming ‐ Version 1 
Copyright  Jim Roberts and David Nassar  November 2012, Pittsburgh PA

